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Numerical Solution of Ill-Posed Problems

Inverse problems are among the most challenging computations in science and
engineering.

They involve determining the parameters of a system that is only observed
indirectly.

Examples:

• Given data from a mass spectrometer, determine the chemical species that
produced it, as well as their relative proportions.

• Given sonar measurements of a containment tank, decide whether it has a
hidden crack.

• Given a blurred image, reconstruct the original.

Can you deblur this image?
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The plan

• The mathematical origins of the problem

• From ill-posed to ill-conditioned

• Method 1: Tikhonov Regularization

• Efficient algorithms for solving the Tikhonov problem

• Method 2: Truncated SVD

• Extending these methods to very large problems: Kronecker Product
Structure

Reference: James G. Nagy and Dianne P. O’Leary,
“Image Deblurring: I Can See Clearly Now,”
Computing in Science and Engineering.
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Project: Vol. 5, No. 3, May/June 2003, pp. 82-85.
Solution: Vol. 5, No. 4, July/August 2003, pp. 72-74.

The mathematical origins of the problem

Let f be the true image. Then f is actually a function over some 2-dimensional
domain that we call Ω. The function values are the intensities of the image at
each coordinate (s1, s2) in the domain.

Let g be the recorded image. Again, g is actually a function over the
2-dimensional domain, but we only have a few samples of this function, perhaps
an nr × nc array of pixel values which we may assume are measured at points
sjk = (j/nr, k/nc) for j = 1, . . . , nr, k = 1, . . . , nc.

Kernels and convolutions

The recorded image g is the result of the convolution of the true image f with a
recording device specified by a kernel function k so that

g(s) =

∫

Ω

k(s, t)f(t)dt.

If k(s, t) = δ(‖s − t‖) where δ is the Dirac δ function, then g(s) = f(s); this is
the ideal case, and k is nonzero at only one point.

In practical situations, k is not this nice, although it often has small support, so
that k(s, t) is zero when t and s are not close to each other.

In this case, the value of the integral is a weighted average of values of f in a
neighborhood of s.

Discretize

We obtain the matrix equation
b = Ax

by discretizing the integral. The row of this equation corresponding to sjk

approximates the relation

g(sjk) =

∫

Ω

k(sjk, t)f(t)dt ≈

nr
∑

ℓ=1

nc
∑

p=1

wℓpk(sjk, tℓp)f(tℓp),

where the values wℓp are chosen to make the approximation as accurate as
desired.
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Example: Choosing wℓp = 1/(nrnc) for all values of ℓ and p gives a rectangle
rule for integration.

If we use our sample values of s as sample values for t, then the entry in the row
of A corresponding to sjk and the column corresponding to sℓp is wℓpk(sjk, sℓp),
and this defines our matrix problem.

A serious limitation: determining k

Usually it is either

• modeled by some mathematical function. For example, for the Hubble
space telescope, a mathematical function was used to model the incorrect
grinding of the lenses.

• measured. For example, we aim the camera at a point source – a picture
that is black except for a single white pixel – and the blurred image defines
k at that pixel. By moving that white pixel and repeating the measurement
– or by assuming that the image is unchanged except for translation as we
move the white pixel – we can approximately determine all of the values
k(sjk, sℓp).

In either case, there is error in the matrix, but for now we assume it is negligible
compared with error in the right-hand side.

From ill-posed to ill-conditioned

Consider a linear system of equations

Ax = b

where A is an n × n matrix, and x and b are vectors.

Suppose A is scaled so that its largest singular value is σ1 = 1.

If the smallest singular value is σn ≈ 0, then A is ill-conditioned. We distinguish
two types of ill-conditioning:

• The matrix A is considered numerically rank deficient if there is a j such
that

σj ≫ σj+1 ≈ · · · ≈ σn ≈ 0 .

That is, there is an obvious gap between large and small singular values.

• If the singular values decay to zero with no particular gap in the spectrum,
then we say the linear system Ax = b is a discrete ill-posed problem.
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The effects of noise

It is very difficult to compute accurate approximate solutions of discrete ill-posed
problems, especially because in most real applications, the right-hand side vector
b is not known exactly. Rather, it is more typical that the collected data has the
form:

b = Ax + η,

where η is a vector representing (unknown) noise or measurement errors.

The goal, then, is: Given an ill-conditioned matrix A and a vector b, compute an
approximation of the unknown vector x.

Näıvely solving Ax = b usually does not work, since the matrix A is so
ill-conditioned.

Result of computing A−1b for our blurred image

Tikhonov lambda= 0.000000
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Diagnosis and cure of the sick matrix A

• The “x-ray machine” that shows us the defects in A is the singular value
decomposition

A = UΣVT .

• “Surgery” on the matrix is performed using regularization.

Method 1: Tikhonov Regularization

The best known regularization procedure, called Tikhonov regularization,
computes a solution of the damped least squares problem:

min
x

{||b − Ax||22 + α2||x||22}

• α2||x||22 imposes a penalty for making the norm of the solution too big,
and this means that the effects of small singular values are reduced.

• The regularization parameter α controls the degree of smoothness of the
solution:

– α = 0 implies no regularization, and we just solve the linear system of
equations, getting a noisy solution.

– If α is large, then the computed solution cannot be a good
approximation of the exact x.

• It is difficult to choose an appropriate value for α.

Unquiz: Show that Tikhonov regularization is equivalent to the linear least
squares problem

min
x

∥

∥

∥

∥

[

b
0

]

−

[

A
αI

]

x

∥

∥

∥

∥

2

2

.

Result of Tikhonov regularization

An example: Can we deblur this image?
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Tikhonov lambda= 0.050000
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Tikhonov lambda= 0.010000
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Tikhonov lambda= 0.005000
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Tikhonov lambda= 0.002500
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Tikhonov lambda= 0.001500
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Tikhonov lambda= 0.001000
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Tikhonov lambda= 0.000950
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Tikhonov lambda= 0.000167
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Tikhonov lambda= 0.000050
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Tikhonov lambda= 0.000000
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What we have learned

• The ill-conditioning of the matrix and the noise in the data make image
deblurring very difficult.

• We can deblur well using Tikhonov regularization.

• Choosing the regularization parameter is easy if the “eye” norm can be
used.

• In general, a good regularization parameter is hard to find.

Efficient algorithms for solving the Tikhonov problem
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We turn to the problem of solving the least squares problem.

Unquiz: Show that if A has a singular value decomposition A = UΣVT , then
the Tikhonov problem can be transformed into the equivalent least squares
problem

min
x̂

∥

∥

∥

∥

[

b̂
0

]

−

[

Σ
αI

]

x̂

∥

∥

∥

∥

2

2

(1)

where x̂ = VT x and b̂ = UT b.

Unquiz: Derive a linear system of equations whose solution is the solution to
(??). Hint: set the derivative of the minimization function to zero and solve for
x̂.

This gives us an algorithm to determine the Tikhonov solution to a discrete
ill-posed problem. Next we consider a second method.

Method 2: Truncated SVD

Another way to regularize the problem is to truncate the singular value
decomposition. The next problem demonstrates how the solution to the least
squares problem can be expressed in terms of the SVD.

Unquiz: Show that the solution to the problem

min
x

||b − Ax||22

can be written as

xℓs = VΣ†UT b ≡
n

∑

i=1

uT
i b

σi

vi ,

where ui is the ith column of U and vi is the ith column of V.

We see that trouble occurs in xℓs if we have a small value of σi dividing a term
uT

i b that is dominated by error. In that case, xℓs is dominated by error, too.

To overcome this, Richard Hanson and also James Varah suggested truncating
the expansion above:

xt =

p
∑

i=1

uT
i b

σi

vi

for some value of p < n.

We could determine p the same way as we determined α above, using the “eye”
norm.

Extending these methods to very large problems
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• The SVD gives us all the information we need to solve discrete ill-posed
problems.

• It works fine for 1-dimensional problems; e.g., spectroscopy.

• For 2- and 3-dimensional problems (images, video), it is too expensive. For
example, to deblur a 1-megapixel image we need an SVD of a matrix of
size 106.

• We can use iterative methods (discussed later), but first let’s consider an
important special case of a very large problem that allows use of the SVD.

A Special case: Kronecker product structure in A

The set-up: We have

• a blurred, noisy image G

• some knowledge of the blurring operator

We want to reconstruct the true original image F.

The vectors in the linear system b = Ax + η represent the image arrays stacked
by columns to form vectors.

In Matlab notation,

x = reshape(F, n, 1), b = reshape(G,n, 1).

The goal in this problem is, given A and G, reconstruct an approximation of the
unknown image F.

In some cases A can be written as a Kronecker product, A = C ⊗ G, and the
SVD can be used.

A few facts on Kronecker products

The Kronecker product C ⊗ G, where C is an m × m matrix, is defined to be

C ⊗ G =











c11G c12G . . . c1mG
c21G c22G . . . c2mG

...
...

. . .
...

cm1G cm2G . . . cmmG











.

Kronecker products have a very convenient property: If C = UCΣCVT
C ,

G = UGΣGVT
G, then

A = UΣVT
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where U = UC ⊗ UG, Σ = ΣC ⊗ ΣG, and V = VC ⊗ VG.

Therefore, it is possible to compute the SVD of a rather large matrix if it is the
Kronecker product of two smaller ones.

See the sample Matlab program, projdemo.m, illustrating this property.

Structure from the convolution integral

The image we get from taking a picture of a point source is a discrete form of a
point spread function (PSF).

In some cases we have two convenient properties:

• The PSF is independent of location.

• The horizontal and vertical components of the blur can be separated.

If this is the case, then the p × q PSF array P can be decomposed as

P = c rT =











c1

c2

...
cp











[

r1 r2 · · · rq

]

where r represents the horizontal component of the blur (i.e., blur across the
rows of the image array), and c represents the vertical component (i.e., blur
across the columns of the image).

The special structure for this blur implies that P is a rank-one matrix with
elements given by

pij = ci rj .

Example: It can be shown that if p = q = 3, the coefficient matrix takes the form

A =





























c2r2 c1r2 c2r1 c1r1

c3r2 c2r2 c1r2 c3r1 c2r1 c1r1

c3r2 c2r2 c3r1 c2r1

c2r3 c1r3 c2r2 c1r2 c2r1 c1r1

c3r3 c2r3 c1r3 c3r2 c2r2 c1r2 c3r1 c2r1 c1r1

c3r3 c2r3 c3r2 c2r2 c3r1 c2r1

c2r3 c1r3 c2r2 c1r2

c3r3 c2r3 c1r3 c3r2 c2r2 c1r2

c3r3 c2r3 c3r2 c2r2
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=

































r2





c2 c1

c3 c2 c1

c3 c2



 r1





c2 c1

c3 c2 c1

c3 c2



 0

r3





c2 c1

c3 c2 c1

c3 c2



 r2





c2 c1

c3 c2 c1

c3 c2



 r1





c2 c1

c3 c2 c1

c3 c2





0 r3





c2 c1

c3 c2 c1

c3 c2



 r2





c2 c1

c3 c2 c1

c3 c2





































.

In general the coefficient matrix A for separable blur has block structure of the
form

A = Ar ⊗ Ac =













a
(r)
11 Ac a

(r)
12 Ac · · · a

(r)
1n Ac

a
(r)
21 Ac a

(r)
22 Ac · · · a

(r)
2n Ac

...
...

...

a
(r)
n1 Ac a

(r)
n2 Ac · · · a

(r)
nnAc













where Ac is an m × m matrix, and Ar is an n × n matrix with entries denoted
by a

(r)
ij .

A = Ar ⊗ Ac (2)

where, if the images X and B have p× q pixels, then Ar is q× q and Ac is p× p.

Constructing the Kronecker Product from the PSF

To explictly construct Ar and Ac from the PSF array, P, we need to be able to
find the vectors r and c.

This can be done by computing the largest singular value, and corresponding
singular vectors, of P.

In Matlab, this can be done efficiently with the built-in svds function:

[u, s, v] = svds(P, 1);

c = sqrt(s)*u;

r = sqrt(s)*v;

In a careful implementation we would compute the first two singular values and
check that the ratio of s2/s1 is small enough to neglect all but the first and
hence that the Kronecker product representation Ar ⊗ Ac is an accurate
representation of A.
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If this is the case, then the p × q PSF array P can be decomposed as

P = c rT =











c1

c2

...
cp











[

r1 r2 · · · rq

]

where r represents the horizontal component of the blur (i.e., blur across the
rows of the image array), and c represents the vertical component (i.e., blur
across the columns of the image).

With the Kronecker product as a tool, we can use Tikhonov or Truncated SVD
as a regularization tool for image processing.

In order to solve our image deblurring problem, we need to operate rather
carefully with the small matrices; otherwise, storage quickly becomes an issue.
Again, see the sample program for guidance.

Final Words

• Discrete ill-posed problems require regularization in order to produce
physically meaningful solutions.

• Two examples of regularization methods are Tikhonov and truncated SVD.

• Structure in the convolution must be exploited if the problem is big.

• We have several important issues still to consider, including choice of the
regularization parameter and solution of the problem if there is significant
error in A.

22


