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The Arnoldi Basis

Recall:

• The Arnoldi basis v1, . . . ,vn is obtained column by column from the
relation

AV = VH

where H is upper Hessenberg and VT V = I.

• In particular, hij = (Avj ,vi).

• The vectors vj can be formed by a (modified) Gram Schmidt process.

For three algorithms for computing the recurrence, see Sec 6.3.1 and 6.3.2.

Facts about the Arnoldi Basis

Let’s convince ourselves of the following facts:
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• The first m columns of V form an orthogonal basis for Km(A,v1).

• Let Vm denote the first m columns of V, and Hm denote the leading
m × m block of H. Then

AVm = VmHm + hm+1,mvm+1e
T
m.

• The algorithm breaks down if hm+1,m = 0. In this case, we cannot get a
new vector vm+1.

• This breakdown means that Km+1(A,v1) = Km(A,v1). In other words,
Km(A,v1) is an invariant subspace of A of dimension m.

How to use the Arnoldi Basis

We want to solve Ax = b.

We choose x0 = 0 and v1 = b/β, where β = ‖b‖.

Let’s choose xm ∈ Km(A,v1).

Two choices:

• Projection:
Make the residual orthogonal to Km(A,v1).
(Section 6.4.1) This is the Full Orthogonalization Method (FOM).

• Minimization:
Minimize the norm of the residual over all choices of x in Km(A,v1).
(Section 6.5) This is the Generalized Minimum Residual Method (GMRES).

FOM (usually called the Arnoldi iteration)

The Arnoldi relation:

AVm = VmHm + hm+1,mvm+1e
T
m.

If xm ∈ Km(A,v1), then we can express it as xm = Vmym for some vector ym.

The residual is

rm = b − Axm

= βv1 − AVmym

= βv1 − (VmHm + hm+1,mvm+1e
T
m)ym.
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To enforce orthogonality, we want

0 = VT
mrm

= βVT
mv1 − (VT

mVmHm + hm+1,mVT
mvm+1e

T
m)ym.

= βe1 − Hmym.

Therefore, given the Arnoldi relation at step m, we solve the linear system

Hmym = βe1

and set

xm = Vmym,

rm = b − Axm

= b − AVmym

= βVme1 − (VmHm + hm+1,mvm+1e
T
m)ym

= Vm(βe1 − Hmym) − hm+1,mvm+1e
T
mym

= −hm+1,mvm+1e
T
mym

= −hm+1,m(ym)mvm+1.

Therefore, the norm of the residual is just |hm+1,m(ym)m|, which can be
computed without forming xm.

GMRES

The Arnoldi relation:

AVm = VmHm + hm+1,mvm+1e
T
m.

The iterate: xm = Vmym for some vector ym.

Define H̄m to be the leading (m + 1) × m block of H.

The residual:

rm = βv1 − (VmHm + hm+1,mvm+1e
T
m)ym

= βv1 − Vm+1H̄mym

= Vm+1(βe1 − H̄mym).

The norm of the residual:

‖rm‖ = ‖Vm+1(βe1 − H̄mym)‖ = ‖βe1 − H̄mym‖.

We minimize this quantity w.r.t. ym to get the GMRES iterate.
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Givens Rotations

The linear system involving Hm is solved using m Givens rotations.

The least squares problems involving H̄m is solved using 1 additional Givens
rotation.

Relation between FOM and GMRES iterates

FOM: HmyF
m = βe1, or

HT
mHmyF

m = βHT
me1.

GMRES: minimize ‖βe1 − H̄myG
m‖ by solving the normal equations

H̄m
T
H̄myG

m = βH̄m
T
e1.

Note that

H̄m =

[

Hm

hm+1,meT
m

]

,

so HT
mHm and H̄m

T
H̄m differ by a matrix of rank 2.

Therefore (Sec 6.5.7 and Sec 6.5.8),

• If we compute the FOM iterate, we can easily get the GMRES iterate, and
vice versa.

• It can be shown that the smallest residual computed by FOM in iterations
1, . . . ,m is within a factor of

√
m of the smallest for GMRES.

• There is a recursion for computing the GMRES iterates given the FOM
iterates:

xG
m = s2

mxG
m−1 − c2

mxF
m,

where s2
m + c2

m = 1 and cm is the cosine used in the last step of the
reduction of H̄m to upper triangular form.

Practicalities

Practicality 1: GMRES and FOM can stagnate.
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It is possible (but unlikely) that GMRES and FOM make no progress at all until
the last iteration.

Example: Let

A =

[

eT 1
I 0

]

, xtrue = en, b = e1.

(e is the vector with every entry equal to 1.) Then
Km(A, b) = span{e1, . . . , em}, so the solution vector is orthogonal to Km(A, b)
for m < n.

This is called complete stagnation. Partial stagnation can also occur.

The usual remedy is preconditioning (discussed later).

Practicality 2: m must be kept relatively small.

As m gets big,

• The work per iteration becomes overwhelming, since the upper Hessenberg
part of Hm is generally dense. In fact, the work for the orthogonalization
grows as O(m2n)

• The orthogonality relations are increasingly contaminated by round-off
error, and this can cause the computation to compute bad approximations
to the true GMRES/FOM iterates.

Two remedies:

• restarting (Sec 6.4.1 and Sec 6.5.5)

• truncating the orthogonalization (Sec 6.4.2 and Sec 6.5.6)

Restarting

In the restarting algorithm, we run the Arnoldi iteration for a fixed number of
steps, perhaps m = 100.

If the resulting solution is not good enough, we repeat, by setting v1 to be the
normalized residual.

This limits the work per iteration, but removes the finite-termination property.

In fact, due to stagnation, it is possible (but unlikely) that the iteration never
makes any progress at all!
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Truncating the orthogonalization

In this algorithm, we modify the Arnoldi iteration so that we only orthogonalize
against the latest k vectors, rather than orthogonalizing against all of the old
vectors.

The matrix H̄approx
m then has only k − 1 nonzeros above the main diagonal, and

the work for orthogonalization is reduced from O(m2n) to O(kmn).

We are still working with the same Krylov subspace, but

• The basis vectors v1, . . . ,vm are not exactly orthogonal.

• We are approximating the matrix H̄m, so we don’t minimize the residual
(exactly) or make the residual (exactly) orthogonal to the Krylov subspace.

All is not lost, though.

In Section 6.5.6, Saad works out the relation between the GMRES residual norm
and the one produced from the truncated method (quasi-GMRES).

Note:

• Quasi-GMRES is not often used.

• Restarted-GMRES is the standard algorithm.

Practicality 3: Breakdown of the Arnoldi iteration is a good thing.

If the Arnoldi iteration breaks down, with hm+1,m = 0, so that there is no new
vector vm+1, then

• Hm = H̄m, so both GMRES and FOM compute the same iterate.

• More importantly, Arnoldi breaks down if and only if xG
m = xF

m = xtrue.
This follows from the fact that the norm of the GMRES residual is
|hm+1,m(ym)m|.

Practicality 4: These algorithms also work in complex arithmetic.

If A or b is complex rather than real, the algorithms still work, as long as we
remember to

• use conjugate transpose instead of transpose.
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• use complex Givens rotations (Section 6.5.9):

[

c̄ s̄
−s c

] [

x
y

]

=

[

γ
0

]

if
s =

y
√

|x|2 + y2
, c =

x
√

|x|2 + y2
.

Convergence Results for GMRES

(Sec 6.11.4) Two definitions:

• We say that a matrix A is positive definite if xT Ax > 0. for all x 6= 0.

– If A is symmetric, this means that all of its eigenvalues are positive.

– For a nonsymmetric matrix, this means that the symmetric part of A,
which is 1

2 (A + AT ), is positive definite.

• The algorithm that restarts GMRES every m iterations is called
GMRES(m).

GMRES(m) converges for positive definite matrices.

Proof: The iteration can’t stagnate, because it makes progress at the first
iteration. In particular, if we seek x = αv1 to minimize

‖r‖2 = ‖b − αAv1‖2

= bT b − 2αbT Av1 + α2vT
1 AT Av1,

where b = βv1 and β > 0 then

α =
bT Av1

vT
1 AT Av1

> 0,

so the residual norm is reduced.

By working a little harder, we can show that it reduced enough to guarantee
convergence. []

GMRES(m) is an optimal polynomial method.

• The iterates take the form

xm = x0 + qm−1(A)r0,

where qm−1 is a polynomial of degree at most m − 1.
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• Saying that x is in Km(A, r0) is equivalent to saying x = qm−1(A)r0 for
some polynomial of degree at most m − 1.

• The resulting residual is

rm = r0 − qm−1(A)Ar0

= (I − qm−1(A)A)r0

= pm(A)r0,

where pm is a polynomial of degree m satisfying pm(0) = 1.

• since GMRES(m) minimizes the norm of the residual, it must pick the
optimal polynomial pm.

• Let A = XΛX−1, where Λ is diagonal and contains the eigenvalues of A.
(In other words, we are assuming that A has a complete set of linearly
independent eigenvectors, the columns of X.) Then

‖rm‖ = min
pm(0)=1

‖pm(A)r0‖

= min
pm(0)=1

‖Xpm(Λ)X−1r0‖

≤ ‖X‖ ‖X−1‖ min
pm(0)=1

‖pm(Λ)‖‖r0‖

≤ ‖X‖ ‖X−1‖ min
pm(0)=1

max
j=1,...,n

|pm(λj)|‖r0‖.

Therefore, any polynomial that is small on the eigenvalues can give us a
bound on the GMRES(m) residual norm, since GMRES(m) picks the
optimal polynomial.

• By choosing a Chebyshev polynomial, Saad derives the bound

‖rm‖ ≤
(

a +
√

a2 − d2

c +
√

c2 − d2

)k

‖X‖ ‖X−1‖ ‖r0‖.

whenever the ellipse centered at c with focal distance d and semi-major
axis a contains all of the eigenvalues and excludes the origin (See the
picture on p. 207).
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