
AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis
Fall 2007

Bi-orthogonalization Methods
Dianne P. O’Leary

c©2006, 2007

Algorithms that use the Bi-orthogonal Basis

• Lanczos Bi-orthogonalization

• Transpose-free variants

Reference: Chapter 7 of Saad

Lanczos Bi-orthogonalization

Up to now: Arnoldi Basis
AV = VH.

Lanczos Bi-orthogonalization (Saad Section 7.1)

AV = VT,

AT W = WTT ,

with VT W = I and T tridiagonal.

Note: If A is symmetric and v1 = w1, then V = W and we have the Lanczos
algorithm that we studied previously.

Let’s work through the relations. As usual, we look at one particular column, say
column j.

Avj = βjvj−1 + αjvj + δj+1vj+1

AT wj = δjwj−1 + αjwj + βj+1wj+1

where βj = tj−1,j , αj = tj,j , and δj+1 = tj+1,j .

Let’s enforce biorthogonality.

• If wj is orthogonal to all of the vectors vi except when i = j, then

wT
j Avj = αjw

T
j vj ,

so
αj = wT

j Avj .

1



• Similarly, letting

δj+1vj+1 ≡ v̂j+1 = (A − αjI)vj − βjvj−1,

βj+1wj+1 ≡ ŵj+1 = (AT − αjI)wj − δjwj−1

we can enforce the condition wT
j+1vj+1 = 1 by making

ŵT
j+1v̂j+1

δj+1βj+1

= 1.

There are several ways to do this, one being Saad’s choice:

δj+1 =
√

|ŵT
j+1

v̂j+1|,

βj+1 =
ŵT

j+1v̂j+1

δj+1

.

• To finish the construction, we need to prove

– the new vector wj+1 is orthogonal to v1, . . . ,vj

– the new vector vj+1 is orthogonal to w1, . . . ,wj

We’ll use an induction proof, assuming that bi-orthogonality holds for all
pairs of indices ≤ j. Saad does the construction for the second condition,
so we’ll just show that wj+1 is orthogonal to v1, . . . ,vj . Consider

βj+1w
T
j+1vi = (AT wj − δjwj−1 − αjwj)

T vi

= wT
j Avi − δjw

T
j−1vi − αjw

T
j vi.

Case 1: i = j. Then

βj+1w
T
j+1vj = wT

j Avj−δjw
T
j−1vj − αjw

T
j vj .

The red term is zero by the induction hypothesis, and the rest is zero by
the definition of αj .

Case 2: i < j − 1. Then

βj+1w
T
j+1vi = wT

j Avi−δjw
T
j−1vi − αjw

T
j vi.

The red terms are zero, and we make a substitution for the blue term:

βj+1w
T
j+1vi = wT

j (βivi−1 + αivi + δi+1vi+1) = 0.

Case 3: i = j − 1. Then

βj+1w
T
j+1vj−1 = wT

j Avj−1 − δjw
T
j−1vj−1−αjw

T
j vj−1

= wT
j (βj−1vj−2 + αj−1vj−1 + δjvj) − δjw

T
j−1vj−1

= δj(w
T
j vj − wT

j−1vj−1)

= δj(1 − 1) = 0.

This completes the proof.

2



How to use the Lanczos bi-orthogonal decomposition

(Saad Section 7.2)

AV = VT,

AT W = WTT ,

Note that the first k columns of V are a basis for Kk(A,v1).

Similarly, the first k columns of W are a basis for Kk(AT ,w1).

To solve Ax = b, we let v1 = b/γ, where γ = ‖b‖. Then we can choose
xk = Vkyk so that the residual is orthogonal to the Krylov subspace
Kk(AT ,w1):

0 = WT
k rk = WT

k (b − Axk)

= WT
k (γv1 − AVkyk)

= γe1 − WT
k VkTkyk

= γe1 − Tkyk.

So we find yk by solving Tkyk = γe1. We will call this the Lanczos
bi-orthogonalization algorithm.

Note that A and AT play exactly the same role in the algorithm, so we can
simultaneously solve AT z = c by

• choosing w1 = c/‖c‖,

• computing the solution to TT
k yk = ‖c‖e1,

• and setting zk = Wkyk.

Breakdown

The algorithm breaks down if

ŵT
k+1v̂k+1 = 0.

This happens in three different ways:

• v̂k+1 = 0. Fortuitous breakdown: we have solved Ax = b.

• ŵk+1 = 0. We have solved AT z = c, but we probably don’t care.

• The vectors are orthogonal to each other. This is bad. It can usually be
cured by a trick called Look-ahead Lanczos (Saad p.220).

3



– The idea is to compute vk+2 and wk+2 even if vk+1 and wk+1 don’t
exist.

– If that works, it is fine, but they may not exist either! Potentially, you
might need to look-ahead all the way to the vn and wn, and that
would be impractical.

Most people just give up and restart if breakdown or near-breakdown occurs.

So the two main disadvantages of the Lanzcos bi-orthogonalization algorithm are

• The need to multiply by AT at each iteration. (Extra work, and the
operator might not even be available.)

• Possible breakdown.

The main advantage is short recurrences! This means

• low storage, independent of k.

• low overhead, so the work per iteration is also independent of k.

A computational variant

(Saad Section 7.3.1) Recall that the cg algorithm has two forms:

• the three-term recurrence resulting from directly applying AV = VT.

• the (usual) p − r form.

Similarly, instead of directly applying the relations AV = VT and
AT W = WTT , a p − r form, called biconjugate gradients (BCG) can be
derived. (Saad Section 7.3.1).

• Orthogonality of the residuals r = b − Ax and s = c − AT z:

sT
i rj = 0 for i 6= j.

• A-conjugacy for the directions p for x and p̄ for z:

p̄i
T Apj = 0 for i 6= j.

Something is missing.

For the Arnoldi basis, we obtained two algorithms:

4



• FOM, which made the residual orthogonal to a subspace. We have the
analogous Lanczos bi-orthogonalization algorithm.

• GMRES, which minimized the residual. What is the analogous algorithm
here?

Well, we have
AVk = Vk+1T̄k,

where T̄k is the leading (k + 1) × k block of T.

To minimize the residual for xk = Vkyk, we minimize

‖b − Axk‖ = ‖γv1 − Vk+1T̄kyk‖

= ‖Vk+1(γe1 − T̄kyk)‖.

For GMRES, we used the fact that VT
k+1

Vk+1 = I, but this is not true for
bi-orthogonalization!

Never underestimate people’s resourcefulness, though. If we plunge on, we can
decide to obtain yk by minimizing ‖γe1 − T̄kyk‖, and this algorithm is called
quasi-minimum residual (QMR). (Saad Section 7.3.2)

Since QMR and GMRES are working over the same subspace, we know that thre
QMR residual is always bounded below by the corresponding GMRES residual. In
fact,

‖b − Axk‖ = ‖Vk+1(γe1 − T̄kyk)‖

≤ ‖Vk+1‖‖γe1 − T̄kyk)‖

≤ κ(Vk+1)‖r
GMRES
k ‖,

where κ(Vk+1) is the ratio of its largest and smallest singular values, and the
last inequality is not obvious.

Transpose-free variants

Again, never underestimate people’s resourcefulness.

The use of the transpose is a big disadvantage, so algorithms have been
developed that avoid it.

• CGS: conjugate gradient squared.

• BiCGStab: bi-conjugate gradient stabilized.

• TF-QMR: transpose-free QMR

CGS

5



This algorithm is inspired by the BCG algorithm: (Saad p.223)

αj =
sT
j rj

p̄T
j Apj

rj+1 = rj − αjApj

sj+1 = sj − αjA
T p̄j

βj =
rT

j+1sj+1

rT
j sj

pj+1 = rj+1 + βjpj

p̄j+1 = sj+1 + βjp̄j

We see that there is a polynomial φj with φj(0) = 1 and

rj = φj(A)r0,

sj = φj(A
T )s0.

Similarly there is a polynomal πj with

pj = πj(A)p0,

p̄j = πj(A
T )p̄0.

If we knew these polynomials, then we could compute

αj =
sT
0 [φj(A)]2r0

p̄0
T [πj(A)p0]2Ap0

,

and there would be a similar formula for βj .

So Sonneveld looked for an algorithm for which

r̂j = [φj(A)]2r0,

so that the s iterates would be unnecessary, and thus no multiplication by AT

would be performed.

He observed that

φj+1(t) = φj(t) − αjtπj(t),

πj+1(t) = φj+1(t) + βjπj(t),

so

φ2
j+1(t) = φ2

j (t) + α2
j t

2π2
j (t)−2αjtφj(t)πj(t),

π2
j+1(t) = φ2

j+1(t) + β2
jπ

2
j (t),+2βjφj+1(t)πj(t).

6



The colored terms need some attention. Notice that

φj(t)πj(t) = φj(t)(φj(t) + βj−1πj−1(t))

= φ2
j (t) + βj−1φj(t)πj−1(t).

So all we need is a recurrence for φj+1(t)πj(t), which is

φj+1(t)πj(t) = (φj(t) − αjtπj(t))πj(t)

= φj(t)πj(t) − αjtπ
2
j (t)

= φj(t)(φj(t) + βj−1πj−1(t)) − αjtπ
2
j (t)

= φ2
j (t) + βj−1φj(t)πj−1(t) − αjtπ

2
j (t).

We now have a way to recursively compute φ2
j+1(A)r0, π

2
j+1(A)p0, and

φj+1(A)πj(A)p0.

So we need no products by AT , but we do need two products by A per iteration,
corresponding to the factors t in the recurrences for φj+1(t) and φj+1(t)πj(t).

This is a very clever algorithm that is virtually never used, because the
recurrences are numerically very sensitive, so it often does not give a good
solution vector.

In particular, the norm of the residual can increase and decrease rather wildly,
and cancellation can cause numerical issues.

Don’t give up: BiCGStab

Instead of using CGS’s
r̂j = [φj(A)]2r0,

we seek a recurrence
r̂j = ψj(A)φj(A)r0,

where φj(A) is still the BCG polynomial but ψj(A) is a stabilizing or smoothing
polynomial defined by

ψj(t) = (1 − ωj−1t)ψj−1(t).

The free parameter ωj−1 can be chosen to minimize the norm of the residual r̂j .
This eliminates the cancellation troubles of CGS and also produces a more
“pleasing” set of iterates.

The algebraic formulas are derived in a way similar to the formulas for CGS.
(Saad Section 7.4.2)

7



In 2001, the Institute for Scientific Information identified Van der Vorst’s
BiCGStab paper as the most cited paper in mathematics published in the 1990s
– an incredible fact!

This algorithm is very widely used!

TF-QMR

Freund, like Van der Vorst, used CGS as a starting point, but he came up with a
different algorithm by splitting each CGS step into two, one for each
matrix-vector product. (Saad Section 7.4.3)

Since BiCGStab generally does better in numerical tests, I’ll let you read about
this one if you are interested.

Final Words

• The Faber-Manteuffel theorem warns us that compromise will be necessary
in algorithms for general matrices; if we want a short recurrence, we cannot
minimize or orthogonalize against K(A,b).

• Of all the compromises, BiCGStab is the most useful in practice.

• Some improvement is probably possible.

• All of these algorithms have block variants.

8


