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Multigrid, part 2

There are three important topics left to consider:

e Programs for multigrid (SCSCwebpage/cs_multigrid)
e Convergence of multigrid. (Saad Section 13.5)

e Algebraic multigrid. (Saad Section 13.6)

Programs for multigrid (SCSCwebpage/cs_multigrid)

Convergence of multigrid

We'll follow Saad in talking about the analysis of a 2-level V-cycle.

Solving the problem exactly on the 2h grid is usually too expensive, so that is not
a practical algorithm.

But the general V-cycle is a perturbed version of this, since the coarse mesh
problem is then solved inexactly rather than exactly.

Notation

e We let Ry, be the operator takes values on grid h/2 and produces values
on grid h. (This moves from fine to coarse grid.) We let P}, be the
operator takes values on grid h and produces values on grid h/2. (This
moves from coarse to fine grid.)

e We choose R, = P{.

o Ayy =Rop APy,

Since we only work with 2 meshes, we'll drop the subscripts on R and P.



V-Cycle: 2 levels

vy, = V-Cycle(vy, Ay, £, 71.72)

Perform 7n; G-S iterations on Aju;, = {4, using vy, as the initial guess,
obtaining an approximate solution that we still call v,.

Compute Vo, to solve Agpvay, = R(fh — Ath).
Set v, = vy, + Pvagy,.

Perform 7ns G-S iterations on Apu;, = f, using vy, as the initial guess,
obtaining an approximate solution that we still call v.

Analysis

e \We want to express this as a stationary iterative method:

(new)

v, = Mvy, +c.

e The algorithm:

Apply 1 G-S iterations. This iteration matrix is Mig. This operator
is called the smoother.

Solve the coarse grid problem and add the correction.
* We get the residual by taking — A}, times the current guess.
* Then we restrict to the coarse grid with R and apply A;hl.
* Then we prolong using P.
* Then we add this onto the iterate.

Apply 12 G-S iterations. This iteration matrix is M.
So the matrix M is

M = MZ (I - PA,,'RA;,) MY = ME,TMYs.

e The following analysis (without loss of generality) takes n; = 0.

Assumptions

(Saad, Section 13.5) We make two (standard) assumptions, one concerning the
smoother and one concerning the grids.
e Smoothing property:
IMEszllh < llzl% — allAnzlh-

for all z and for some constant « independent of h.
(A=A, D=diag(Ay).)



e Approximability:
min ||z — Pwl[}, < 8lz]|%,

where the minimum is taken over all vectors w on the coarse grid, and
where the constant (3 is independent of h.

Properties

e PLI-T= PA;thAh is a projection operator, meaning that
I-T)2=I-Tand T2=T.

Proof:

(I-T)° = (PA,RA,)(PA;RA))
PA;, Ao AL RA,
PA'RA,,

I-T.

The proof that T? = T follows easily.

o P2:
TTA, = A, —ALRTAPTA,
= A,(I-PA'RA))
= A,T.
e P3:
TP = (I-PA,'RA,)P

P — PA,'RA,P
P — PA Ay,
= P-P=0.

o P4 | Tz|% < 2%
Proof:
(T + (I-T))zl%
= 2TTTA Tz — 22" TTA, I -T)z+ 271 -T)TA,I-T)z
|ITz|% + (I - T)z|%,

Iz]1%

and the result follows. (We have used P1 and P2 to get rid of the plum
colored term in the middle line.)

e CS: The Cauchy-Schwartz inequality says

2"y| < llzlllly]-



e P5: For all y, if z=Tw (i.e., z is in the range of T), then by P3,

z' APy = wI TA, Py = wl A, TPy = 0.

e PG: Therefore, if z is in the range of T, then ||z||4 < /B||Anz|p-1.

Proof: We let y be the minimizer in the definition of approximability. Then

Iz = z'Apz
= zTA,D7V2DY%(z — Py) (by P5)
< |D7V?Auz| [D'?(z - Py)|| (by CS)
= [|[Apz|p-1(z = Py)llp
< \/BHAthD_leHA. (by Approzimability)
e Finally,
IME&sTz|% < ||Tz|% — | AnTz|3 (by Smoothing)
(07
< | Tz% - Blszlli (by P6)
«
= (1-5) Imal
o
< (1 5) lelh by PY)

e If we let z denote the error in the solution before applying a multigrid
iteration, the inequality above guarantees reduction in the error (when
measured in the Aj-norm) at a rate independent of &, so the number of
iterations necessary to reduce the error by a given amount is constant,
independent of A, so it can be done using an amount of work proportional
to a work unit.

Algebraic multigrid

We introduced multigrid by presenting grids.
There have been many attempts to extend the ideas to gridless problems.

Let's think of h as a parameter related to the size of the matrix problem, so that
A}, is (at most) twice as big as Agy,.

The definition of a multigrid method depends on only two things:

e We choose R, = P7.

e Ay, = Ry ApPyy, and this matrix is (at most) half the size of Ay,.



This is easy to accomplish in general.

The convergence analysis depends on two additional assumptions:

e Smoothing property:
IMEgzl% < 12l — ol Anzl? .
for all z and for some constant « independent of h.
e Approximability:

min |z — Pwl|3, < 6jz]7,

This is not easy, and we will abandon hope of it.

One approach to Algebraic Multigrid: Graph coloring

e Use the graph of the matrix A to define the geometry of the problem.
e Color the nodes of the graph to define the coarse grid.

e Define the restriction operator R to take a weighted average of values on
the fine grid to create a value on the coarse grid.

See Saad’s “guiding principles” on p. 442.

A second approach to Algebraic Multigrid: ILU

Suppose, by coloring the graph or by other means, we can obtain a permutation
matrix Q so that
B F
T _
QAQ {E C}

where B is block diagonal.

Then our matrix problem can be written
B F up o f 1
E C u || fo

e ol le vl

where the Schur complement is

S=C-EB'F.

Note that
B F
0 S

So we have reduced our problem to:



o Let w; =f; and solve wy =fs — EB 'wy.
e Solve Su2 = Wao.

e Solve Bul = W1 — Elg.
and we only need to be able to solve linear systems involving B and S easily.
The problem involving S can be thought of as the coarse grid problem.

Repeating this recursively (next, looking for a similar partition of S) gives a
multilevel algorithm.

When the Schur complement gets too dense, we can substitute an approximation
to it and then apply a V-cycle.

Final words

We used GS as a smoother. Other SIMs (e.g., Jacobi) can also be used.

(Geometric) multigrid is a terrific method for pde's and certain other
problems.

Algebraic multigrid needs a lot more work.

Saad’s Section 13.7 is titled, “Multigrid vs. Krylov Methods.” A better
approach is to think of multigrid as a preconditioner.

— If multigrid works well, then only 1 iteration of the Krylov method is
used, and the algorithm is just multigrid.

— If multigrid is slow, the Krylov method will accelerate it.



