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Multigrid, part 2

There are three important topics left to consider:

• Programs for multigrid (SCSCwebpage/cs multigrid)

• Convergence of multigrid. (Saad Section 13.5)

• Algebraic multigrid. (Saad Section 13.6)

Programs for multigrid (SCSCwebpage/cs multigrid)

Convergence of multigrid

We’ll follow Saad in talking about the analysis of a 2-level V-cycle.

Solving the problem exactly on the 2h grid is usually too expensive, so that is not
a practical algorithm.

But the general V-cycle is a perturbed version of this, since the coarse mesh
problem is then solved inexactly rather than exactly.

Notation

• We let Rh be the operator takes values on grid h/2 and produces values
on grid h. (This moves from fine to coarse grid.) We let Ph be the
operator takes values on grid h and produces values on grid h/2. (This
moves from coarse to fine grid.)

• We choose Rh = PT
h .

• A2h = R2hAhP2h

Since we only work with 2 meshes, we’ll drop the subscripts on R and P.
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V-Cycle: 2 levels

vh = V-Cycle(vh, Ah, f h, η1,η2)

Perform η1 G-S iterations on Ahuh = f h using vh as the initial guess,
obtaining an approximate solution that we still call vh.

Compute v2h to solve A2hv2h = R(f h − Ahvh).

Set vh = vh + Pv2h.

Perform η2 G-S iterations on Ahuh = f h using vh as the initial guess,
obtaining an approximate solution that we still call vh.

Analysis

• We want to express this as a stationary iterative method:

v
(new)
h = Mvh + c.

• The algorithm:

– Apply η1 G-S iterations. This iteration matrix is Mη1

GS . This operator
is called the smoother.

– Solve the coarse grid problem and add the correction.

∗ We get the residual by taking −Ah times the current guess.

∗ Then we restrict to the coarse grid with R and apply A−1
2h .

∗ Then we prolong using P.

∗ Then we add this onto the iterate.

– Apply η2 G-S iterations. This iteration matrix is Mη2

GS .

– So the matrix M is

M = Mη2

GS(I − PA−1
2h RAh)Mη1

GS ≡ Mη2

GSTMη1

GS .

• The following analysis (without loss of generality) takes η1 = 0.

Assumptions

(Saad, Section 13.5) We make two (standard) assumptions, one concerning the
smoother and one concerning the grids.

• Smoothing property:

‖Mη2

GSz‖2
A ≤ ‖z‖2

A − α‖Ahz‖2
D−1 ,

for all z and for some constant α independent of h.
(A = Ah, D =diag(Ah).)
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• Approximability:
min
w

‖z − Pw‖2
D ≤ β‖z‖2

A,

where the minimum is taken over all vectors w on the coarse grid, and
where the constant β is independent of h.

Properties

• P1: I − T = PA−1
2h RAh is a projection operator, meaning that

(I − T)2 = I − T and T2 = T.

Proof:

(I − T)2 = (PA−1
2h RAh)(PA−1

2h RAh)

= PA−1
2h A2hA

−1
2h RAh

= PA−1
2h RAh

= I − T.

The proof that T2 = T follows easily.

• P2:

TT Ah = Ah − AhR
T A−1

2h PT Ah

= Ah(I − PA−1
2h RAh)

= AhT.

• P3:

TP = (I − PA−1
2h RAh)P

= P − PA−1
2h RAhP

= P − PA−1
2h A2h

= P − P = 0.

• P4: ‖Tz‖2
A ≤ ‖z‖2

A.

Proof:

‖z‖2
A = ‖(T + (I − T))z‖2

A

= zT TT AhTz − 2zT TT Ah(I − T)z + zT (I − T)T Ah(I − T)z

= ‖Tz‖2
A + ‖(I − T)z‖2

A,

and the result follows. (We have used P1 and P2 to get rid of the plum
colored term in the middle line.)

• CS: The Cauchy-Schwartz inequality says

|zT y| ≤ ‖z‖‖y‖.
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• P5: For all y, if z = Tw (i.e., z is in the range of T), then by P3,

zT AhPy = wT TAhPy = wT AhTPy = 0.

• P6: Therefore, if z is in the range of T, then ‖z‖A ≤
√

β‖Ahz‖D−1 .

Proof: We let y be the minimizer in the definition of approximability. Then

‖z‖2
A = zT Ahz

= zT AhD
−1/2D1/2(z − Py) (by P5)

≤ ‖D−1/2Ahz‖ ‖D1/2(z − Py)‖ (by CS)

= ‖Ahz‖D−1‖(z − Py)‖D

≤
√

β‖Ahz‖D−1‖z‖A . (by Approximability)

• Finally,

‖Mη2

GSTz‖2
A ≤ ‖Tz‖2

A − α‖AhTz‖2
D−1 (by Smoothing)

≤ ‖Tz‖2
A − α

β
‖Tz‖2

A (by P6)

=

(

1 − α

β

)

‖Tz‖2
A

≤
(

1 − α

β

)

‖z‖2
A. (by P4)

• If we let z denote the error in the solution before applying a multigrid
iteration, the inequality above guarantees reduction in the error (when
measured in the Ah-norm) at a rate independent of h, so the number of
iterations necessary to reduce the error by a given amount is constant,
independent of h, so it can be done using an amount of work proportional
to a work unit.

Algebraic multigrid

We introduced multigrid by presenting grids.

There have been many attempts to extend the ideas to gridless problems.

Let’s think of h as a parameter related to the size of the matrix problem, so that
Ah is (at most) twice as big as A2h.

The definition of a multigrid method depends on only two things:

• We choose Rh = PT
h .

• A2h = R2hAhP2h and this matrix is (at most) half the size of Ah.
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This is easy to accomplish in general.

The convergence analysis depends on two additional assumptions:

• Smoothing property:

‖Mη2

GSz‖2
A ≤ ‖z‖2

A − α‖Ahz‖2
D−1 ,

for all z and for some constant α independent of h.

• Approximability:
min
w

‖z − Pw‖2
D ≤ β‖z‖2

A,

This is not easy, and we will abandon hope of it.

One approach to Algebraic Multigrid: Graph coloring

• Use the graph of the matrix A to define the geometry of the problem.

• Color the nodes of the graph to define the coarse grid.

• Define the restriction operator R to take a weighted average of values on
the fine grid to create a value on the coarse grid.

See Saad’s “guiding principles” on p. 442.

A second approach to Algebraic Multigrid: ILU

Suppose, by coloring the graph or by other means, we can obtain a permutation
matrix Q so that

QAQT =

[

B F
E C

]

where B is block diagonal.

Then our matrix problem can be written
[

B F
E C

] [

u1

u2

]

=

[

f 1

f 2

]

.

Note that
[

B F
E C

]

=

[

I 0
EB−1 I

] [

B F
0 S

]

where the Schur complement is

S = C − EB−1F.

So we have reduced our problem to:

5



• Let w1 = f 1 and solve w2 = f 2 − EB−1w1.

• Solve Su2 = w2.

• Solve Bu1 = w1 − Fu2.

and we only need to be able to solve linear systems involving B and S easily.

The problem involving S can be thought of as the coarse grid problem.

Repeating this recursively (next, looking for a similar partition of S) gives a
multilevel algorithm.

When the Schur complement gets too dense, we can substitute an approximation
to it and then apply a V-cycle.

Final words

• We used GS as a smoother. Other SIMs (e.g., Jacobi) can also be used.

• (Geometric) multigrid is a terrific method for pde’s and certain other
problems.

• Algebraic multigrid needs a lot more work.

• Saad’s Section 13.7 is titled, “Multigrid vs. Krylov Methods.” A better
approach is to think of multigrid as a preconditioner.

– If multigrid works well, then only 1 iteration of the Krylov method is
used, and the algorithm is just multigrid.

– If multigrid is slow, the Krylov method will accelerate it.
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