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Solving Sparse Linear Systems: Slow Iterative Methods

The plan:

• Iterative methods:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, SOR.

Basic iterations

The idea: Given an initial guess x(0) for the solution to Ax∗ = b, construct a
sequence of guesses {x(0),x(1),x(2), . . .} converging to x∗.

The amount of work to construct each new guess from the previous one should
be a small multiple of the number of nonzeros in A.

Stationary Iterative Methods

These methods grew up in the engineering and mathematical literature. They
were very popular in the 1960s and are still sometimes used.

Today, they are almost never the best algorithms to use (because they take too
many iterations), but they are useful preconditioners for Krylov subspace
methods.

We will define three of them:

• Jacobi (Simultaneous displacement)

• Gauss-Seidel (Successive displacement)

• SOR

Theme: All of these methods split A as M − N for some nonsingular matrix M.
Other splittings of this form are also useful.
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The Jacobi iteration

Idea: The ith component of the residual vector r is defined by

ri = bi−ai1x1 − ai2x2 − . . . − ai,i−1xi−1−aiixi−ai,i+1xi+1 − . . . − ainxn.

Let’s modify xi to make ri = 0.

Given x(k), construct x(k+1) by

x
(k+1)
i = (bi−

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.

Observations:

• We must require A to have nonzeros on its main diagonal.

• The algorithm is easy to program! We only need to store two x vectors,
x(k) and x(k+1).

• The iteration may or may not converge, depending on the properties of A.

• We should only touch the nonzeros in A – otherwise the work per iteration
would be O(n2) instead of O(nz).

• If we partition A as L + D + U, where D contains the diagonal entries, U
contains the entries above the diagonal, and L contains the entries below
the diagonal, then we can express the iteration as

Dx(k+1) = b − (L + U)x(k)

and this is useful for analyzing convergence. (M = D, N = −(L + U))

The Gauss-Seidel iteration

Idea: If we really believe that we have improved the ith component of the
solution by our Jacobi iteration, then it makes sense to use its latest value in the
iteration:
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Given x(k), construct x(k+1) by

x
(k+1)
i = (bi−

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j )/aii, i = 1, . . . , n.

Observations:

• We still require A to have nonzeros on its main diagonal.

• The algorithm is easier to program, since we only need to keep one x
vector around!

• The iteration may or may not converge, depending on the properties of A.

• We should only touch the nonzeros in A – otherwise the work per iteration
would be O(n2) instead of O(nz).

• If we partition A as L + D + U, where D contains the diagonal entries, U
contains the entries above the diagonal, and L contains the entries below
the diagonal, then we can express the iteration as

(D + L)x(k+1) = b − Ux(k)

and this is useful for analyzing convergence. (M = D + L, N = −U)

The SOR (Successive Over-Relaxation) iteration

Idea: People who used these iterations on finite difference matrices discovered
that Gauss-Seidel (GS) converged faster than Jacobi (J), and they could improve
its convergence rate by going a little further in the GS direction:

Given x(k), construct x(k+1) by

x(k+1) = (1 − ω)x(k) + ωx(k+1)
GS

where ω is a number between 1 and 2.

Unquiz: Suppose n = 2 and our linear system can be graphed as in the figure.
Draw the first 3 Jacobi iterates and the first 3 Gauss-Seidel iterates using the
point marked with a star as x(0). Does either iteration depend on the ordering of
the equations or unknowns? []

Convergence of Stationary iterative methods
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• All of these iterations can be expressed as

x(k+1) = Gx(k) + c

where G = M−1N is a matrix that depends on A and c is a vector that
depends on A and b.

• For all of these iterations, x∗ = Gx∗ + c.

• Subtracting, we see that the error e(k) = x(k) − x∗ satisfies

e(k+1) = Ge(k),

and it can be shown that the error converges to zero for any initial x(0) if
and only if all of the eigenvalues of G lie inside the unit circle.

• Many conditions on A have been found that guarantee convergence of
these methods; see the SIM notes.

Unquiz: Let G be an n × n matrix with a full set of linearly independent
eigenvectors. Given a vector x(0), consider the iteration

x(k+1) = Gx(k) + b,

for k = 0, 1, . . . .

(a) Suppose we have a vector xtrue satisfying

xtrue = Gxtrue + b.

Such a vector is called a fixed point of the iteration. Show that if
e(k) = x(k) − xtrue, then

e(k+1) = Ge(k).

(b) Show by induction that
e(k) = Gke(0).

(c) Show that e(k) → 0 as k → ∞ for any initial vector x(0) if and only if all
eigenvalues of G lie within the unit circle; i.e., if and only if |λj | < 1 for
j = 1, . . . , n. Hint: To do this, consider expressing e(0) as

e(0) =

n∑

j=1

αjuj

where uj are the eigenvectors of G and the values αj are appropriate
coefficients. Now compute Gke(0) and study its convergence. []

This is enough about slow methods, except to note the following fact.

From SIM to Krylov subspace methods
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So far: Stationary iterative methods.

• Ax = b is replaced by x = Gx + c.

• x(k+1) = Gx(k) + c

• If x(0) = 0, then

x(1) = c

x(2) ∈ span{c,Gc}

x(3) ∈ span{c,Gc,G2c}

x(k) ∈ span{c,Gc,G2c, . . . ,Gk−1c}

≡ Kk(G, c)

and we call Kk(G, c) a Krylov subspace.

• The work per iteration is O(nz) plus a small multiple of n.

• Note that Kk(G, c) = Kk(Ĝ, c) if Ĝ = I − G.

The idea behind Krylov subspace methods: Instead of making the GS choice (for
example) from the Krylov subspace, let’s try to pick the best vector without
doing a lot of extra work.

What is “best”?

• The variational approach: Choose x(k) ∈ Kk(G, c) to minimize

‖x − x∗‖Z

where ‖y‖2
Z = yT Zy and Z is a symmetric positive definite matrix.

• The Galerkin approach: Choose x(k) ∈ Kk(G, c) to make the residual
r(k) = b − Ax(k) orthogonal to every vector in Kk(G, c) for some choice
of inner product.

We’ll follow up on these ideas in the next set of notes.

6


