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The Model

(A+E)x=b-r

where

e A is the estimate of the point spread function (psf)

e b is the observed image



e x is the true image
e E is the error in the psf estimate

e 1 is the error in the observed image

In deconvolution, we try to recover x given A and b, assuming that E is zero.

In blind deconvolution, we account for the fact that E is nonzero.

Ways to estimate x: Least Squares

Ax=b-r (%)

e |Least squares
min |r[3

e Regularized Least Squares
min |3 + || L

where ||Lx|| measures the size of x in an appropriate weighted norm.

More ways to estimate x: Total Least Squares

(A+E)x=b—-r (%)

e Total Least Squares
min ||E||7 + ||r[l3
x,E
subject to (¥*).

e Structured Total Least Squares

min |[E[[F + ||z[l3
x,E

subject to (), and constraining E to have the same structure as A:
perhaps the same sparsity pattern or other properties.



e Regularized, Structured Total Least Squares

min [[E[|F + [|e[|3 + [ Lx|3
x,E

subject to (), and constraining E to have the same structure as A

Even more ways to estimate x: Total Least Norm

Instead of the 2-norm, we can use alternatives:

Regularized, Structured Total Least Norm

. L ¢ ¢
min [[E|[" + [|r]” + [[Lx|
x,E

subject to (), and constraining E to have the same structure as A, where ||.|| is
some convenient norm.

The Context

e Rosen, Park, Glick: proposed an algorithm for STLN in 1-, 2-, and
0o-norms.

e Kamm and Nagy: developed algorithms for TLS when the matrix is
Toeplitz. Proposed direct and iterative methods. Proposed a
preconditioner.

e Mastronardi, Lemmerling, Van Huffel: developed a fast approach for
RSTLS when the matrix is Toeplitz

e More recently: Fu and Barlow: developed an algorithm for RSTLS for
BTTB matrices based on iterative solution of the linearized problems.
Proposed a preconditioner.

Our contribution:
e Pruessner and O'Leary: extended Rosen et al STLN algorithm to include
RSTLN in each norm and demonstrated its use on image deblurring.

e Kalsi and O’Leary: developed a fast approach for RSTLS for matrices with
certain displacement structures including Toeplitz and BTTB.



e Mastronardi, Lemmerling, Kalsi, O'Leary, and Van Huffel: exploited
sparsity structure in image deblurring.
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The Setup

E € R™*" is parameterized by elements of the vector a € RY, ¢ < mn.

Assume there exists a matrix X parameterized by x such that

Xoa = Ex.

The RSTLN formulation is to find vectors o and x to minimize

min B + |+ [Lax]

We will use the vector 1-, 2-, and oo norms.

For notation ease, we will take L = AI and measure ||E|| = ||Da||. This reduces
the problem to minimizing
r(a, x)
Do
AX

p



Now let Ax and AE denote small changes in x and E, respectively. Then in
order to make (X + AX)(a + Aa) = (E + AE)(x + Ax), we require

XAa = (AE)x.

If we expand r(a,x) in a Taylor series about [a? xT]T" and ignore second order

and higher terms, we have
r(a+ Aa,x + Ax) b—-(A+E)x — XAa — (A + E)Ax
r(a,x) — XAa — (A + E)Ax.

Q

This linearization results in:
X A+4+E A -r
min D 0 < ) +

Aa,Ax 0 NI
P

x=x+Axand a = a+ A

RSTLN Algorithm

Set E = 0,,%p, and & = 0.
Compute x by min ||[Ax — b||,, (for p = 2 this is just least squares).
X

Compute X from x and the residual r = b — Ax.

For k =1,2,... until |Ax]||, ||Aet|| < € repeat Steps 4.1 — 4.3
4.1. Solve

B e

Amig D 0 Ax Da
oo 0 A AX
42 Setx=x+Ax and a = a + Aa.
4.3. Construct E from «, and X from x and compute
r=b—-(A+E)x.
5. The recovered image is x and the recovered blurring
matrix (A+E).

X A+E <Aa)+ —r(a,x)

p

RSTLN for p =2

The minimization problem in the RSTLN formulation is equivalent to minimizing
the function:

1 1 1
d(e,x) = S [[r(e, )3 + 5[ Dexlf3 + 5[I1Ax]3. (1)

As Rosen et al noted for the STLN method, Step 4.1 is a Gauss-Newton method
which approximates the Hessian of ¢(c, x) by the positive definite matrix
M7TM, where

X A+E
M=|D 0
0 A



Special structure should be exploited.

RSTLN for p = o0

The optimal function value in Step 4.1 is &, where & is determined from the
linear program

min o
Ao, Ax,G
subjectto —de,, < XAa+(A+E)Ax—r < Jep
—oe; < DAa +Da < oeq
—oe, < AAX + Ax < oe,
where e, € R¥*1 is a vector of ones.
RSTLN forp =1
0 is determined by
m q n
i=1 i=1 i=1
subjectto -1 < XAa+(A+E)Ax—-r < oy
—0y < DAa+ Da < 09
—a3 < AAX + Ax < 03

where &1 € R™*!, &5 € R?*!, and &3 € R"*!.

Convergence of RSTLN for p =1 or p =

As for the STLN problem, the function minimized in RSTLN is nonconvex so that
there is no guarantee that the RSTLN algorithm converges to a global minimum.

For the p = 2 norm case the Gauss-Newton theory is applicable: a suitable line
search method can be used to guarantee convergence to a local minimizer from
any starting point.
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How can we make these calculations fast?

e For 1-norm or co-norm: open question.

e For 2-norm: Mastronardi, Lemmerling, and Van Huffel present an
algorithm for solving fast STLS problems when A is Toeplitz.

o We have extended their method to

— RSTLS for Toeplitz matrices.

— RSTLS for a broader class of matrices.

Generators for MTM

Our first tool is the derivation of a generator for the matrix M”M when M has
low displacement rank.

The Displacement Rank of MTM

Suppose that M has low displacement rank relative to the matrices
7, € Rm+p)x(m+p) and Z, € R(+2)X(n+p) \which means that if we define

N=M-Z MZI,

then rank(N) = p1, which is small relative to n + p.

Suppose ~
Z=7,+W

is an orthogonal matrix (ZTZ =1I), where W has rank ps, also assumed to be
small.



For example, if E is Toeplitz, let Z; be the shift-down matrix with ones on its
subdiagonal and zeros elsewhere, and then W is the matrix with a one in the last
position of row 1.

Then M”M also has low displacement rank relative to Zs:

Theorem: If the rank of N = M — Z;MZZ is p; and if the orthogonal matrix Z
is equal to Z; + W where W has rank ps, then

MM - Z,M"™MZ? = NN+ N'(M - WMZI)
+(MT — (WMZHT)N
—(WMZ;)" (WMZ3)
+MT(WMZL) + (WMZ3)'™M

has rank at most 2(p1 + p2).

Example: Applying the result to STLS problem

Example: Suppose A is Toeplitz, so

| X A+E
S
NN = —rir{ —rp,rl —ejef

T T T T
_(Cp Cp)ep+lep+1 +rme; +eir,

NT(M - WMZI)

+M" = (WMZ])")N = 2rir{ —rpe] +2eje] +ep1¢. M
—rle[a_1 —erl + MTcpeZ+1 —e,ir;
—(WMZ3)"(WMZ;) = epie,
M"(WMZ3) + (WMZ)"™M = riel,; +eppr]

Adding these terms together, we obtain

T a7l T T T T T
MM —-Z;M"MZ, = eje; +rir; —rpr, (1l —c,cyle e,
T T. oT
+epric, M+ M cpe,
T T T T T \T /a2
= ee] +rir; —r,r, —M"'c,(M'c,)" /v

+(vept1 + M ey /7) (veps1 + M ey /)T



where 72 = (1 —c]'c,).

A BTTB matrix A gives a similar derivation.

We now know how to determine p vectors g; so that

P
MM - Z;M "™MZ] = sigig]

i=1

where s; equals plus or minus 1.

When Z; and Z» are shift-down matrices, Chun, Kailath, Lev-Ari showed that
this implies that

P
MM = ) sLL!
i=1

LT

[Li ... L, |S| :
T

L,

where S = diag(s;) and L; is the lower triangular Toeplitz matrix with first row

equal to g7’ We now generalize this result somewhat.

Theorem: If Zq is nilpotent, then
A —Z,AZT = gh”
if and only if
A =Li(g)Lj (h)

where
L;(x) = [ x Zi;x ... Z?er*lx ] .

Corollary: If Z is nilpotent, then

P
A - 7,AZ] =) gh!
=1

if and only if
P

A= Z Li(gi)L3 (hy).

i=1
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e Results

e Conclusions

Test 1

Our first test consists of a cross of size 21 x 21. The true PSF is a Gaussian blur
with variance 2.5, truncated to a support of size 11 x 11.

This resulted in pert(A) = 3.99 x 1072, Furthermore, 11-bit noise was added to
the blurred image, resulting in pert(b) = 1.10 x 1073.

(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)

5 10 15 20 5 10 15 20
(C) STLN-inf (D) RSTLN-inf

5 10 15 20 5 10 15 20
(E) STLN-2 (F) RSTLN-2

5 10 15 20 5 10 15 20
(H) RSTLN-1
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(A) LR w/noise (PER. BC) (B) LR w/noise (0 BC)

5 10 15 20 5 10 15 20

(C) M-LR w/noise (no taper, blur est.) (D) M-LR w/noise (no taper, ones)

5 10 15 20 5 10 15 20

(E) M-LR w/noise (taper, blur est.) (F) M-LR wi/noise (taper, ones)

Test 2

Our next test consists of a somewhat broader cross image of size 41 x 41 with a
nonzero cross width of 5. The image was blurred with an 11 x 11 Gaussian. 8-bit
noise was added to the blurred images, resulting in pert(b) = 1.05 x 10~2 and
9.8 x 1073, respectively. The blur estimate was obtained by adding 6-bit noise to
the original blur, resulting in pert(A) = 3.91 x 1072

14



(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)

(D) RSTLN-2

10 20 30 40

(E) APEX/SECB winoise (PER. BC) (F) OPT.FUNC.FIT (0 BC)

[N
w
o
~

9 11 13 15 17 19 21
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Test Case 2 | err(x) | err(A) err(b)
p=2STLN 4.2895 | 4.03e—2 | 1.03e—2
p =2 RSTLN | 0.5885 | 1.15e+0 | 9.20e—3

(A) LR w/noise (per. BC) (B) LR w/noise (0 BC)

10 20 30 40

(C) M-LR w/noise (no taper, blur est.) (D) M-LR w/noise (no taper, ones)

10 20 30 40

(E) M-LR wi/noise (taper, blur est.) (F) M-LR w/noise (taper, ones)

Test 3

Our final comparison test consists of an image obtained from the NASA Image
Exchange (http://nix.nasa.gov). It shows the corona of the sun and a large
solar eruption. We truncated the image to size 99 x 99 and reduced it to
gray-scale.

Again, the image was blurred with a Gaussian PSF of size 11 x 11 in two ways:
one assuming zero values for pixels outside the image, and the other assuming a
periodic image. 6-bit noise was added to the image after blurring using a zero
boundary condition. This resulted in pert(b) = 2.20 x 102, For the periodic

16



image no noise was added to the blurred image. The blur estimate was obtained
by adding 6-bit noise to the original blur (pert(A) = 2.46 x 10~2).

(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)

(D) RSTLN-2

20 40 60 80 20 40 60 80

(E) APEX/SECB (PER. BC) (F) OPT.FUNC.FIT (0 BC)

17



(A) LR w/noise (PER. BC) (B) LR w/noise (0 BC)

20 40 60 80 20 40 60 80

(C) M-LR w/noise (no taper, blur est.) (D) M-LR w/noise (no taper, ones)

20 40 60 80

(E) M-LR w/noise (taper, blur est.)
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Summary of results
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e The Blind Lucy-Richardson method using FFTs is useful only if the
original image either was blurred using periodic boundary conditions or if
the image has finite support. If it does not satisfy these conditions
recovered images often suffer from ringing.

e Like the blind Lucy-Richardson method, Carasso's APEX/SECB
method requires periodic boundary conditions or finite support.
Furthermore, it can only be applied to a restrictive class of PSFs and
requires images to belong to a restrictive class.

e In contrast, neither STLN nor RSTLN imposes any restrictions on the
image or PSF and both are effective on small images.

e If the noise is Gaussian, then least squares theory provides ample
justification for choosing the 2-norm in RSTLN rather than the 1-norm or
infinity-norm. However, in order to take advantage of this theory, the
standard deviations of the two error distributions must be known so that
the error terms can be balanced. When this data is unavailable, or when
the noise distributions are not Gaussian, then the 1-norm or infinity-norm
have no theoretical disadvantages. Our experiments show that the 1-norm
in particular provides high-quality reconstructions and is not sensitive to
outliers in the data.

e For image deblurring, the sparsity as well as the displacement structure
needs to be exploited to make the computations practical.
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