
Notes on Some Methods for Solving Linear

Systems

Dianne P. O’Leary, 1983 and 1999 and 2007

September 25, 2007

When the matrix A is symmetric and positive definite, we have a whole new
class of algorithms for solving Ax∗ = b. Consider the function

f(x) =
1

2
xT Ax − xT b .

Notice that in one dimension, this defines a parabola, and if x is a 2-vector, it
defines a bowl-shaped function with elliptical horozontal cross sections. (The
bowl fails to hold water if any eigenvalue of A is negative.)

The solution to the problem

min
x

f(x) (1)

is given by the vector satisfying

∇f(x) = Ax − b = 0 .

(Note that f(x) is the negative of what we have been calling the residual.) Thus,
the solution to problem (1) is precisely the vector we seek in solving the linear
system Ax∗ = b.

1 The Steepest Descent Algorithm

Recall from calculus that the gradient, ∇f(x), is the direction in which the
function f is most rapidly increasing, and −∇f(x) is the direction of steepest
descent. Thus, if we want to minimize f , we might think of taking a guess at
x∗, evaluating the gradient, and taking a step in the opposite direction until
the function stops decreasing. Then we can repeat the process. This gives the
following algorithm.

1. Pick x0 .

2. For k = 0, 1, . . . ,

(a) Evaluate pk = −∇f(xk) = rk.

1

(b) Let xk+1 = xk+αkpk, where αk is the minimizer of minα f(xk+αpk).

End For.

To visualize the algorithm, picture an elliptical valley surrounded by mountains.
Level surfaces of the terrain are shown in Figure 1, as they might appear on
a topographical map. If a person is at point x0 in the fog and wants to reach
the pit of the valley, she might follow an algorithm of picking the direction of
steepest descent, following the straight path until it starts to rise, and then
picking the new steepest descent direction. In that case, she follows the zigzag
path indicated in the figure. (See how relevant numerical analysis can be in real
life?)

We can find an analytic formula for αk. For fixed xk and pk,

f(xk + αpk) =
1

2
(xk + αpk)T A(xk + αpk) − (xk + αpk)T b

=
1

2
α2pT

k Apk + αpT
k Axk + −αpT

k b + constant .

The minimum of f with respect to α occurs when the derivative is zero:

pT
k Axk + αpT

k Apk − pT
k b = 0 (2)

so

α = −pT
k (Axk − b)

pT
k Apk

=
pT

k rk

pT
k Apk

(3)

So, to perform the minimization along a line, we set

αk =
pT

k rk

pT
k Apk

=
rT
k rk

pT
k Apk

(See the appendix for the proof of equivalence of the two expressions for α.)
Let

E(x) =
1

2
(x − x∗)T A(x − x∗) .

This function also is minimized when x = x∗, and it is a convenient way to
measure error. It can be shown that the steepest descent algorithm has the
following convergence rate:

E(xk) ≤
(

λmax − λmin

λmax + λmin

)2k

E(x0) ,

where λmax and λmin are the largest and smallest eigenvalues of A. (Try to
interpret this result in terms of the condition number of A in the 2-norm, the
ratio of the largest to smallest eigenvalue. Which matrices will show fast con-
vergence?)

2

Figure 1: Level curves (contour plot) for a quadratic function of two variables,
with the path of the steepest descent algorithm marked on it. After 20 iterations,
the error has been reduced by a factor of 10−5. Conjugate gradients would step
from the initial iterate to the next, and then to the minimizer.

−20 −15 −10 −5 0
−6

−4

−2

0

2

4

6

x(0)

x(1)

x*

3

2 The Conjugate Direction Algorithm

As we can see, the steepest descent algorithm is often far too slow. We will now
develop an algorithm that only takes n steps. It is based on a very simple idea.
Suppose we had n linearly independent vectors pk, k = 0, 1, . . . , n− 1, with the
property

pT
k Apj = 0 , k 6= j .

(If A = I, this is just “orthogonality.” For a general symmetric A, it is called
“A-conjugacy.”) Since there are n vectors, and they are linearly independent,
they form a basis, and we can express any vector as a linear combination of
them; for example,

x∗ − x0 =

n−1
∑

j=0

αjpj .

Let’s multiply each side of this equation by pT
k A for each k. On the left hand

side we have
pT

k A(x∗ − x0) = pT
k (b − Ax0) = pT

k r0 ,

and on the right we have

pT
k A

n−1
∑

j=0

αjpj = αkpT
k Apk .

Therefore,
pT

k r0 = αkpT
k Apk

and

αk =
pT

k r0

pT
k Apk

.

So we have a new algorithm for solving Ax∗ = b:

1. Pick x0 and A-conjugate directions pk, k = 0, 1, . . . , n − 1.

2. For k = 0, 1, . . . , n − 1

(a) Set

αk =
pT

k r0

pT
k Apk

.

(b) Let xk+1 = xk + αkpk.

End For.

Then xn = x∗. It would not be hard to convince yourself that, because of
conjugacy,

pT
k r0 = pT

k rk

and thus the formula for αk is exactly equivalent to (3), although the directions
pk are chosen differently.

4

It is easy to construct a set of A-conjugate vectors. Just begin with any
linearly independent set vk, k = 0, 1, . . . , n − 1, and perform a Gram-Schmidt
process:

1. Let p0 = v0 .

2. For k = 0, 1, . . . , n − 2

pk+1 = vk+1 −
k
∑

j=0

pT
j Avk+1

pT
j Apj

pj

End For.

It is more numerically stable to implement this last equation iteratively, substi-
tuting pk+1 for vk+1 after j = 0 (Modified Gram-Schmidt algorithm):

1. Let pk+1 = vk+1.

2. For j = 0, 1, . . . , k,

pk+1 = pk+1 −
pT

j Apk+1

pT
j Apj

pj

End For.

3 The Conjugate Gradient Algorithm

The conjugate gradient algorithm is a special case of the conjugate direction
algorithm. In this case, we intertwine the calculation of the new x vector and
the new p vector. In fact, the set of linearly independent vectors vk we use in
the Gram-Schmidt process is just the set of residuals rk. The algorithm is as
follows:

1. Let x0 be an initial guess.
Let r0 = b − Ax0 and p0 = r0.

2. For k = 0, 1, 2, . . . , until convergence,

(a) Compute the search parameter αk and the new iterate and residual

αk =
rT
k rk

pT
k Apk

,

xk+1 = xk + αkpk ,

rk+1 = rk − αkApk ,

(b) Compute the new search direction pk+1 by Gram-Schmidt on rk+1

and the previous p vectors to make pk+1 A-conjugate to the previous
directions.

5

End For.

Note that the first step is a steepest descent step, and that in Figure 1, the
sequence of points is x0, x1, and x∗.

In this form, the algorithm is a lengthy process, particularly the Gram-
Schmidt phase. We can shortcut in two places, though. In the current form we
need two matrix multiplications per iteration: Apk for αk and Axk+1 for rk+1.
But note that

rk+1 = b − Axk+1 = b − A(xk + αkpk) = rk − αkApk

so we actually need only one matrix multiplication.
The second shortcut is really surprising. It turns out that

pT
j Ark+1 = 0, j < k ,

so the Gram-Schmidt formula (with vk+1 replaced by rk+1) reduces to

pk+1 = rk+1 −
pT

k Ark+1

pT
k Apk

pk

which is very little work!
So here is the practical form of the conjugate gradient algorithm.

1. Let x0 be an initial guess.
Let r0 = b − Ax0 and p0 = r0.

2. For k = 0, 1, 2, . . . , until convergence,

(a) Compute the search parameter αk and the new iterate and residual

αk =
pT

k rk

pT
k Apk

, (or, equivalently,
rT
k rk

pT
k Apk

)

xk+1 = xk + αkpk ,

rk+1 = rk − αkApk ,

(b) Compute the new search direction

βk = −pT
k Ark+1

pT
k Apk

, (or, equivalently,
rk+1

T rk+1

rT
k rk

) ,

pk+1 = rk+1 + βkpk ,

End For.

6

And after K ≤ n steps, the algorithm terminates with rK = 0 and xK = x∗.
The number K is bounded above by the number of distinct eigenvalues of A.

Not only does this algorithm terminate in a finite number of steps, a definite
advantage over steepest descent, but its error on each step has a better bound:

E(xk) ≤
(

1 −
√

κ−1

1 +
√

κ−1

)2k

E(x0) ,

where κ = λmax/λmin. So, even as an iterative method, without running a full
K steps, conjugate gradients converges faster.

4 Preconditioned Conjugate Gradients

Consider the problem

M−1/2AM−1/2x̄ = M−1/2b ,

where M is a symmetric positive definite. Then x = M−1/2x̄ solves our original
problem Ax∗ = b. Applying conjugate gradients to this problem yields

1. Let x̄0 be an initial guess.
Let r̄0 = M−1/2b − M−1/2AM−1/2x̄0 and p̄0 = r̄0.

2. For k = 0, 1, 2, . . . , until convergence,

(a) Compute the search parameter αk and the new iterate and residual

αk =
r̄T
k r̄k

p̄T
k M−1/2AM−1/2p̄k

x̄k+1 = x̄k + αkp̄k ,

r̄k+1 = r̄k − αkM−1/2AM−1/2p̄k ,

(b) Compute the new search direction

βk =
r̄k+1

T r̄k+1

r̄T
k r̄k

,

p̄k+1 = r̄k+1 + βkp̄k ,

End For.

Now let’s return to the original coordinate system. Let M−1/2r = r̄, x =
M−1/2x̄, and p = M−1/2p̄. Then the algorithm becomes

1. Let x0 be an initial guess.
Let r0 = b − Ax0 and p0 = M−1r0.

7

2. For k = 0, 1, 2, . . . , until convergence,

(a) Compute the search parameter αk and the new iterate and residual

αk =
rT
k M−1rk

pT
k Apk

xk+1 = xk + αkpk ,

rk+1 = rk − αkApk ,

(b) Compute the new search direction

βk =
rk+1

T M−1rk+1

rT
k M−1rk

,

pk+1 = M−1rk+1 + βkpk ,

End For.

We choose the symmetric positive definite matrix M so that M−1/2AM−1/2

has better eigenvalue properties, and so that it is easy to apply the operator
M−1.

• For fast iterations, we want to be able to apply M−1 very quickly.

• To make the number of iterations small, we want M−1 to be an approxi-
mate inverse of A.

Some common choices of the preconditioning matrix M :

• M = the diagonal of A.

• M = a banded piece of A.

• M = an incomplete factorization of A, leaving out inconvenient elements.

• M = a related matrix; e.g., if A is a discretization of a differential operator,
M might be a discretization of a related operator that is easier to solve.

• M might be the matrix from our favorite stationary iterative method
(SIM).

That last choice could use a little explanation. Consider your favorite sta-
tionary iterative method (Jacobi, Gauss-Seidel, SOR, etc.) It can be derived
by taking the equation Ax = b, splitting A into two pieces A = M − N , and
writing Mx = Nx + b. The iteration then becomes

Mxk+1 = Nxk + b

8

or
xk+1 = M−1Nxk + M−1b.

Manipulating this a bit, we get

xk+1 = xk + (M−1N − I)xk + M−1b

= xk + M−1(N − M)xk + M−1b

= xk + M−1(b − Axk)

= xk + M−1rk .

The matrix M that determines the multiple of the residual that we add on to
x becomes the conjugate gradient preconditioner.

5 Appendix: Algebra of Conjugate Gradients

In this appendix, we establish the Krylov subspace property of conjugate gra-
dients. and the equivalence of the alternate formulas for α and β.

Let p0 = r0 = b−Ax0. Then we have already established the following four
relations:

rk+1 = rk − αkApk , (4)

pk+1 = rk+1 + βkpk , (5)

αk =
rT
k pk

pT
k Apk

, (6)

βk = −rk+1
T Apk

pT
k Apk

. (7)

In this appendix we establish nine more.
The next two relations lead us to the alternate formula for α. First,

pT
k rk+1 = 0 (8)

since

pT
k rk+1 = pT

k rk − αkpT
k Apk by (4)

= 0 by (6) .

Next,
rT
k rk = rT

k pk (9)

since it is true for i = 0, and if we assume it true for i then

rk+1
T pk+1 = rk+1

T rk+1 + βkrk+1
T pk by (5)

= rk+1
T rk+1 by (8) .

9

Therefore,

αk =
rT
k rk

pT
k Apk

.

Now we aim for the alternate formula for β. We have that

pk+1
T Apk = 0 (10)

since

pk+1
T Apk = rk+1

T Apk + βkpT
k Apk by (5)

= 0 by (7) .

The next two relations

rT
k pj = 0 , k > j , (11)

pT
k Apj = 0 , k 6= j , (12)

are established together. For k, j = 0, 1, they are true by (8) and (10). Assume
that they are true for indices less than or equal to k. Then by (4),

rk+1
T pj = rT

k pj − αkpT
k Apj = 0 , (13)

where the last equality follows from the induction hypothesis if j < k and from
(8) if j = k. Therefore,

pk+1
T Apj = rk+1

T Apj + βkpT
k Apj by (5)

= rk+1
T −rj+1+rj

αj
+ βkpT

k Apj by (4)

= rk+1
T βjpj−pj+1+pj−βj−1pj−1

αj

+βkpT
k Apj by (5)

= 0 if j < k by (13) and the
induction hypothesis

= 0 if j = k by (10).
The next relation that we need is

rT
k rj = 0, k 6= j (14)

We can assume that k > j. Now, if j = 0, rT
k rj = rT

k p0 = 0 by (11). If j > 0,
then

rT
k rj = rT

k pj − βj−1r
T
k pj−1 by (5)

= 0 by (11) ,

and this establishes (14). Now we work with β:

10

βk = − rk+1
T Apk

pT
k

Apk
by (7)

= − rk+1
T (rk−rk+1)

αkpT
k

Apk
by (4)

= − rk+1
T (rk−rk+1)

rT
k

pk
by (6)

= + rk+1
T rk+1

rT
k

pk
by (14)

Therefore, by (9),

βk =
rk+1

T rk+1

rT
k rk

. (15)

Finally, we note that that if sp denotes the subspace spanned by a set of
vectors, then

sp{p0, p1, . . . , pk} = sp{r0, Ar0, . . . , A
k−1r0} = sp{r0, r1, . . . , rk} (16)

since pk+1 ∈ sp{rk+1, pk} by (5) and rk+1 ∈ sp{rk, Apk} by (4). This shows
that conjugate gradients is a Krylov subspace method. In fact, it is characterized
by minimizing E(x) over all vectors with x − x0 ∈ sp{r0, Ar0, . . . , A

k−1r0}.

6 References

The original paper on conjugate gradients:
M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving
Linear Systems,” J. Res. Natl. Bur. Standards 49 (1952) pp. 409-436.

A clear exposition of the algorithm (without preconditioning):
David G. Luenberger, Linear and Nonlinear Programming, Addison Wesley, 2nd
edition (1984).

These notes parallel Luenberger’s development in many ways.

11

