MAPL 600 / CMSC 760 Fall 2007

Take-Home Exam 2 Show all work. All work must be your own (i.e., no group efforts are allowed). If you use a reference, cite it, or you will lose credit! Work problems totaling 50 points.

(I'll stop grading after that, so don't hand in extra parts.) Due: Friday Oct 19, 8am. (See late penalty policy on information sheet.)

1a. (10) Let \mathbf{T}_m be a symmetric tridiagonal matrix of size $m \times m$ and let \mathbf{T}_{m-1} be the $(m-1) \times (m-1)$ matrix formed from its first m-1 rows and columns. Denote the eigenvalues of \mathbf{T}_{m-1} by $\tau_1 \geq \ldots \geq \tau_{m-1}$, and denote the eigenvalues of \mathbf{T}_m by $\lambda_1 \geq \ldots \geq \lambda_m$. Prove that for $j = 1, \ldots, m-1$,

$$\lambda_j \ge \tau_j \ge \lambda_{j+1}.$$

Note: The result is true for general symmetric matrices, but we only need it for the tridiagonal case. Hint: You may use without proof the Courant-Fischer Minimax Theorem which says that if \mathbf{A} is symmetric then

$$\lambda_j(A) = \min \max \frac{\mathbf{y}^T \mathbf{A} \mathbf{y}}{\mathbf{y}^T \mathbf{y}}.$$

The min is taken over all choices of j-1 linearly independent vectors, and the max is taken over all nonzero vectors **y** that are orthogonal to these vectors. You may also use the Maximin Theorem

$$\lambda_j(A) = \max \min \frac{\mathbf{y}^T \mathbf{A} \mathbf{y}}{\mathbf{y}^T \mathbf{y}}.$$

The max is taken over all choices of n - j linearly independent vectors, and the min is taken over all nonzero vectors **y** that are orthogonal to these vectors.

1b. (10) This leads to an algorithm for approximating some of the eigenvalues of a large sparse symmetric matrix \mathbf{A} : run Arnoldi and use the eigenvalues of \mathbf{T}_m as approximations to some eigenvalues of \mathbf{A} . Prove (using the Arnoldi relation and about 2 lines of writing) that \mathbf{T}_n is similar to the $n \times n$ matrix \mathbf{A} , and show how to use the eigenvectors of \mathbf{T}_m to form approximations to some eigenvectors of \mathbf{A} .

1c. (10) Implement your algorithm to approximate some of the eigenvalues and eigenvectors of a symmetric positive definite \mathbf{A} , by modifying $\operatorname{cg.m}$ (available on the website) or by writing your own program. Use Matlab's eig to find the eigenvalues and eigenvectors of \mathbf{T}_m (although faster algorithms exist, which take advantage of the tridiagonal structure of \mathbf{T}_m). Try it on the matrix $\mathbf{a} = \operatorname{gallery}('wathen', 20, 20)$ and compare your computed eigenvalues at m =

100 iterations (using $\mathbf{b} =$ the vector of all ones) with the true values, computed by eig.

Discuss the results.

2a. (10) Suppose we apply the (symmetric) Lanczos (tridiagonalization) algorithm (p.186) to the matrix

$$\mathbf{A} = \left[egin{array}{cc} \mathbf{0} & \mathbf{C} \ \mathbf{C}^T & \mathbf{0} \end{array}
ight]$$

where **C** is $m \times n$, $m \ge n$. Show that we obtain vectors $\mathbf{z}_1, \ldots, \mathbf{z}_k$ and $\mathbf{w}_1, \ldots, \mathbf{w}_k$ satisfying

$$\begin{aligned} \mathbf{C}\mathbf{Z}_k &= \mathbf{W}_{k+1}\mathbf{T}_{k+1}, \\ \mathbf{C}^T\mathbf{W}_k &= \mathbf{Z}_{k+1}\bar{\mathbf{T}}_{k+1} \end{aligned}$$

where $\bar{\mathbf{T}}_{k+1}$ is $(k+1) \times k$ and tridiagonal. (Hint: Write out what $\mathbf{AV} = \mathbf{VT}$ means for this particular matrix.) Now show that the eigenvalues of \mathbf{T}_{m+n} are equal to the singular values of \mathbf{C} , the negatives of the singular values of \mathbf{C} , and (possibly) zeros.

Hint: Every matrix has a singular value decomposition (SVD)

$$\mathbf{C} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}$$

where

- **U** has dimension $m \times m$ and $\mathbf{U}^T \mathbf{U} = \mathbf{I}$,
- Σ has dimension $m \times n$, the only nonzeros are on the main diagonal, and these singular values are nonnegative real numbers $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n \ge 0$,
- **V** has dimension $n \times n$ and $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.
- The columns of **U** are the eigenvectors of $\mathbf{C}\mathbf{C}^{T}$.
- The columns of \mathbf{V} are the eigenvectors of $\mathbf{C}^T \mathbf{C}$.
- The eigenvalues of $\mathbf{C}^T \mathbf{C}$ (and the nonzero eigenvalues of $\mathbf{C}\mathbf{C}^T$) are $\sigma_1^2, \ldots, \sigma_n^2$.

2b. (10) Suppose we compute, column by column, the relations $\mathbf{CZ} = \mathbf{WB}$ and $\mathbf{C}^T \mathbf{W} = \mathbf{ZB}^T$, where $\mathbf{W}^T \mathbf{W} = \mathbf{I}$, $\mathbf{Z}^T \mathbf{Z} = \mathbf{I}$, and **B** is zero except in its main diagonal and superdiagonal. (You need not show that this **W** and **Z** are the same as those from 2a.) Show that the singular values of **C** are equal to the singular values of \mathbf{B}_n . Write down the recurrences for an algorithm for approximating the singular values and singular vectors of **C** by computing the first k columns of the relations and applying an SVD algorithm to \mathbf{B}_k . 2c. (10) Implement your algorithm from 2b in Matlab and try it on the matrix from load('west0479.mat'). Compare the singular values computed for k = 100 to the true values computed using svd(full(west0479)). Discuss the results.