
AMSC 607 / CMSC 764 Advanced Numerical Optimization
Fall 2008

UNIT 4: Special Topics
PART 2: Global Optimization

Dianne P. O’Leary
c©2008

Global Optimization

Local Optimization Problem: Find x∗ ∈ S such that

f(x∗) ≤ f(x)

for all x ∈ S that satisfy ‖x− x∗‖ ≤ ε for some number ε > 0.

Global Optimization Problem: Find x∗ ∈ S such that

f(x∗) ≤ f(x)

for all x ∈ S.

Note that we now demand that x∗ be the best point, not just the locally best.

References:

• Global Optimization Website
http://www.mat.univie.ac.at/ neum/glopt.html

• R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization,
Kluwer, Dordrecht, 1995.

• There is a journal of Global Optimization and there are frequent
conferences.

• A. Neumaier, Complete Search in Continuous Global Optimization and
Constraint Satisfaction, Acta Numerica 2004. (Available on his website)

• The “Global Optimization” category in Optimization Online.

All we have time to do is give a menu of possible approaches and a sample of
just a few of them.

Types of methods

Type 1: Heuristic Methods

These methods are not guaranteed to succeed, but on some classes of problems,
they work well.

1

Heuristic Example 1: randomization

Feed random starting guesses to your favorite optimization program.

Heuristic Example 2: genetic algorithms

These algorithms carry a set of guesses. At each iteration, each guess is modified
(mutated) in several ways, and some are chosen to continue, in a survival of the
fittest strategy.

• These algorithms are easy to program.

• Success depends on adapting the mutations to the problem type.

Idea:

• Begin with a set of guesses {x(k)}, k = 1, . . . , N .

• Form several mutations of each the guesses with probability related to how
much the mutation improves the function value.

(A mutation might be a change of a single coordinate, an interchange of
coordinates, a substitution of coordinates from a different guess, etc.)

• Save a subset of the mutants as the next guesses.

Heuristic Example 3: Homotopy algorithms

We embed our problem in a family of problems and try to trace the set of local
solutions.

Let
F(x, t) = tg(x) + (1− t)c(x)

where g is the gradient of our minimization function f and c is the gradient of a
convex function with (unique) minimizer x̂.

When t = 0, there is a unique solution to the equation F(x, t) = 0: x = x̂.

When t = 1, we have our original problem.

So the idea is to increase t gradually from 0 to 1, solving the equation
F(x, t) = 0, for a fixed value of t, using Newton’s method (for example) started
with the solution for the previous value of t.

2

Picture

The branch points, at which new minimizers appear, are signaled by singular
Hessian matrices.

Heuristic Example 4: Tunneling

Reference: Levy and Montalvo, SIAM J Scientific and Statistical Computing 6
(1985) 15-29.

We find a series of better and better local minimizers by getting rid of the ones
we have already found.

Algorithm: Begin with a guess x̂.

1. Find a local minimizer of f using initial guess x̂ and your favorite
minimization algorithm. The result is x̄.

2. Let f∗ be the smallest value of f that we have achieved thus far. Set {x∗i }
i = 1, . . . , ` to be the set of x values that we have already found that
achieve the value.

3. Now find a local minimizer of T using initial guess x̄ + a random
perturbation and your favorite minimization algorithm, where

T (x) =
f(x)− f∗∏`

i=1 ‖x− x∗i ‖ηi

where ηi is chosen “appropriately.”

4. Repeat.

Type 2: Transformation methods

• These methods tranform the problem into a more tractable one.

• They only work if the original problem has some known nice properties.

Transformation Example: Branch and Bound

Example: If we are trying to minimize subject to a single constraint
0 ≤ c(x) ≤ 1, we can say that the solution to our problem is the better of the
solutions to the two problems

min
0≤c(x)≤.5

f(x)

3

and
min

.5≤c(x)≤1
f(x) .

• For more details, see Grid methods (below).

• Often, the transformation is to a mixed integer linear programming
problem.

Type 3: Systematic Methods

These methods are guaranteed (under exact arithmetic) to succeed with a
predictable amount of work.

Systematic Example 1: simulated annealing
:

This method is provably convergent (with probability 1) but very slow unless
enhancements are added.

Motivation: Suppose we have a collection of molecules forming a liquid like
water. The molecules move somewhat at random:

• When the temperature is high, they have a lot of energy and big
movements, even if the movement raises the total energy of the system.

• As the temperature is lower, the energy of each molecule is less, and they
tend to move only in directions that decrease the total energy of the
system.

• Finally, as we reach the freezing point, the movements are just vibrations
within a fixed crystal structure.

The process of lowing the temperature slowly to the freezing point, so that at
any time the system is approximately minimizing its energy, is called annealing.

Simulated annealing (Metropolis, 1952) mimics this process: we add a fictitious
temperature parameter T that is slowly reduced. Instead of adjusting the
positions of the molecules, we change the entries in x, and the energy of the
system is measured by f(x).

For a fixed value of T , we iterate until f ceases to change much:

4

• Generate a random change ∆x for x.

• If f is reduced by the change, accept it.

• If f is increased by the change, accept it with probability
e(f(x)−f(x+∆x))/T .

Choosing the parameter T , how fast to reduce it, and how long to iterate at each
fixed value is an art.

Systematic Example 2: Grid methods

These methods are good if we have some extra information about the function.

Assume that f is Lipschitz continuous: there exists a constant c such that

|f(x)− f(y)| ≤ c‖x− y‖

for all x, y ∈ S.

And for ease of illustration, we’ll assume that S is a box.

Idea:

• Begin by setting B = {S}, x̂ = the center of the box S, and f̂ = f(x̂).

• At each iteration, until the volume of the boxes on the list is small enough,

– Remove each each box from the list B and subdivide it into 4 boxes.

– For each of these boxes, find the center point xc and evaluate f(xc).
If the minimizer could not be in this box

(i.e., if f(xc) > f̂ + cr where r is the radius of the box),

then we can drop this box. Otherwise, add this box to the list B for
the next iteration.

Picture.

Final words:

• Global optimization problems are just plain hard.

• Heuristics often give the best answers the fastest.

• This is a very fertile area for research.

5

