
AMSC 607 / CMSC 764 Advanced Numerical Optimization
Fall 2008

UNIT 2: Unconstrained Optimization, Part 1
Dianne P. O’Leary

c©2008

Unconstrained Optimization: Fundamentals

The plan:

• How do we recognize a solution?

• Some geometry.

• Our basic algorithm for finding a solution.

• The model method: Newton.

• How close to Newton do we need to be?

• Making methods safe:

– Descent directions and line searches.

– Trust regions.

Note:

• You are responsible for material in your text when I refer to it.

• References from other books are supplementary and optional.

References for this set of notes: N&S Chapter 2 and Chapter 10.

How do we recognize a solution?

How do we recognize a solution?

Problem P: Given a function f : S → R, find

min
x∈S

f(x)

with solution x∗.

The point x∗ is called the minimizer, and the value f(x∗) is the minimum.

1

For unconstrained optimization, the set S is usually taken to be Rn, but
sometimes we make use of upper or lower bounds on the variables, restricting our
search to a box

{x : ` ≤ x ≤ u}
for some given vectors `,u ∈ Rn.

What does it mean to be a solution?

The point x∗ is a local solution to Problem P if there is a δ > 0 so that if x ∈ S
and ‖x− x∗‖ < δ, then f(x∗) ≤ f(x).

In other words, x∗ is at least as good as any point in its neighborhood.

The point x∗ is a global solution to Problem P if for any x ∈ S, then
f(x∗) ≤ f(x).

Note: It would be nice if every local solution was guaranteed to be global. This
is true if f is convex. We’ll look at this case more carefully in the ”Geometry”
section of these notes.

Some notation

We’ll assume throughout the course that f is smooth enough that it has as many
continuous derivatives as we need. For this section, that means 2 continuous
derivatives plus one more, possibly discontinuous.

The gradient of f at x is defined to be the vector

g(x) = 5f(x) =

 ∂f/∂x1

...
∂f/∂xn

 .

The Hessian of f at x is the derivative of the gradient:

H(x) = 52f(x), with hij =
∂2f

∂xi∂xj

Note that the Hessian is symmetric, unless f fails to be smooth enough.

How do we recognize a solution?

Recall from calculus Taylor series: Suppose we have a vector p ∈ Rn with
‖p‖ = 1, and a small scalar h. Then

f(x∗ + hp) = f(x∗) + hpT g(x∗) +
1
2
h2pT H(x∗)p + O(h3) .

2

First Order Necessary Condition for Optimality

f(x∗ + hp) = f(x∗) + hpT g(x∗) +
1
2
h2pT H(x∗)p + O(h3) .

Now suppose that g(x∗) is nonzero. Then we can always find a descent or
downhill direction p so that

pT g(x∗) < 0 .

(Take, for example, p = −g(x∗)/‖g(x∗)‖.)

Therefore, for small enough h, we can make 1
2h2pT H(x∗)p small enough that

f(x∗ + hp) < f(x∗).

Therefore, a necessary condition for x∗ to be a minimizer is that g(x∗) = 0.

Second Order Necessary Condition for Optimality
So we know that if x∗ is a minimizer, then g(x∗) = 0, so

f(x∗ + hp) = f(x∗) +
1
2
h2pT H(x∗)p + O(h3) .

Now suppose that we had a direction p so that pT H(x∗)p < 0. (We call this a
direction of negative curvature.) Then again, for small enough h, we could make
f(x∗ + hp) < f(x∗).

Therefore, a necessary condition for x∗ to be a minimizer is that there be no
direction of negative curvature.

From linear algebra, this is equivalent to saying that the matrix H(x∗) must be
positive semidefinite. In other words, all of its eigenvalues must be nonnegative.

Are these conditions sufficient?

Not quite.

Example: Let f be a function of a single variable:

f(x) = x3.

Then f ′(x) = 3x2 and f ′′(x) = 6x, so f ′(0) = 0 and f ′′(0) = 0, so x = 0
satisfies the first- and second-order necessary conditions for optimality, but it is
not a minimizer of f . []

3

We are very close to sufficiency, though: Recall that a symmetric matrix is
positive definite if all of its eigenvalues are positive.

If g(x) = 0 and H(x) is positive definite, then x is a local minimizer.

Unquiz: Prove this. []

Some geometry

What all of this means geometrically

Imagine you are at point x on a mountain, described by the function f(x), and it
is foggy. (So x ∈ R2.)

The direction g(x) is the direction of steepest ascent. So if you want to climb
the mountain, it is the best direction to walk.

The direction −g(x) is the direction of steepest descent, the fastest way down.

Any direction p that makes a positive inner product with the gradient is an uphill
direction, and any direction that makes a negative inner product is downhill.

If you are standing at a point where the gradient is zero, then there is no ascent
direction and no descent direction, but a direction of positive curvature will lead
you to a point where you can go uphill, and a direction of negative curvature will
lead you to a point where you can descend.

If you can’t find any of these, then you are at the bottom of a valley!

Geometry of sets

Unquiz: Let the set S be defined by

S = {x ∈ Rn : c(x) ≥ 0} .

Draw S for each of these examples:

1.

−x1 − x2 ≥ −1
x1 ≥ 0
x2 ≥ 0

Notational note: −x1 − x2 ≥ −1 means c1(x) = −x1 − x2 + 1.

4

2.

−x1 − x2 ≥ −1
x1 + x2 ≥ 1

3.

−x2
1 − x2

2 ≥ −1
x1 ≥ 0
x2 ≥ 0

4.

x2
1 + x2

2 ≥ 1
x1 ≥ 0
x2 ≥ 0

[]

Unquiz: Show that
cj(x) = 0 , j = 1, . . . ,m

if and only if
cj(x) ≥ 0 , j = 1, . . . ,m,

cm+1(x) = −c1(x)− . . .− cm(x) ≥ 0 .

[]

Some jargon about sets

Sets may be

• bounded or unbounded. A set is bounded if we can draw a finite
(hyper)sphere around it.

• convex or nonconvex. A set S is convex if, given any two points in S, the
points on the line joining them are also in S.

Get comfortable with these concepts if they are unfamiliar.

Unquiz: Prove that the set

{x ∈ Rn : Ax ≥ b}

5

is convex, where A ∈ Rm×n. []

Some jargon about functions

Sets can be convex, but functions can be, too.

A function f is convex if its graph would hold water: for any points y, z in the
domain of f , and for all t ∈ [0, 1],

f((1− t)y + tz) ≤ (1− t)f(y) + tf(z) .

In other words, f does not lie above any of its secants.

Picture.

A function f is strictly convex if we can replace ≤ by < and t ∈ [0, 1] by
t ∈ (0, 1) in the definition above.

A function f is concave if −f is convex.

A straight line is both convex and concave!

Example: The function f(x) = x2 is convex, since for t ∈ [0, 1],

f((1− t) y + tz)− ((1− t)f(y) + tf(z))
= (1− t)2y2 + t2z2 + 2(1− t)tyz − (1− t)y2 − tz2

= [(1− t)2 − (1− t)]y2 + 2(1− t)tyz + [t2 − t]z2

= [t2 − t]y2 + 2(1− t)tyz + t(t− 1)z2

= t(t− 1)[y2 − 2yz + z2]
= t(t− 1)(y − z)2 ≤ 0 .

[]

Exercise: Show that f(x) = |x| is convex but not strictly convex.

Example: The function f(x) = x3 is convex for x > 0 but concave for x < 0.
The point x = 0 is an inflection point.

Why convexity is important to us

A function is proper convex if it is convex, bounded below, and not identically
equal to +∞.

(We may be sloppy and just say “convex” when we mean “proper convex.”)

6

The point x∗ ∈ S is a local minimizer of f if there exists a number ε > 0 such
that if y ∈ S and ‖y− x∗‖ < ε, then f(x∗) ≤ f(y).

The point x∗ ∈ S is a global minimizer of f on S if, for all points y ∈ S,
f(x∗) ≤ f(y).

Theorem:

• If f is proper convex and if x∗ is a local minimizer of f on a convex set S,
then x∗ is the global minimizer on S.

• The set of global minimizers of a proper convex function f on a convex set
S is convex.

Proof: For the first part, suppose x̂ is the global minimizer. Then f(x∗) > f(x̂),
so for t ∈ [0, 1),

(1− t)f(x̂) + tf(x∗) < f(x∗)

But by convexity,

f((1− t)x̂+tx∗) ≤ (1− t)f(x̂) + tf(x∗),

so x∗ cannot be a local minimizer. This is a contradiction.

For the second part, it is actually simpler to prove a more general result: the
level sets Tα = {x ∈ S : f(x)≤α} are convex. This is true since, for all y, z ∈ Tα,

f((1− t)y + tz) ≤ (1− t)f(y) + tf(z) ≤ α ,

so (1− t)y + tz ∈ Tα. []

So if we have a problem involving minimizing a convex function over a convex
set, it is much easier to solve than the general problem!

The basic algorithm

The basic algorithm

Our basic strategy is inspired by the foggy mountain:

Take an initial guess at the solution x(0), our starting point on the mountain. Set
k = 0.

Until x(k) is a good enough solution,

7

Find a search direction p(k).
Set x(k+1) = x(k) + αkp(k), where αk is a scalar chosen to guarantee
that progress is made.
Set k = k + 1.

Initially, we will study algorithms for which αk = 1.

Unresolved details:

• testing convergence.

• finding a search direction.

• computing the step-length αk.

The model method: Newton

Newton’s method

Newton’s method is one way to determine the search direction p(k). It is inspired
by our Taylor series expansion

f(x + p) ≈ f(x) + pT g(x) +
1
2
pT H(x)p ≡ f̂(p).

Suppose we replace f(x + p) by the quadratic model f̂(p) and minimize that.

In general, the model won’t fit f well at all ... except in a neighborhood of the
point x where it is built. But if our step p is not too big, that is ok!

So let’s try to minimize f̂ with respect to p. If we set the derivative equal to zero

g(x) + H(x)p = 0

we see that we need the vector p defined by

H(x)p = −g(x) .

This vector is called the Newton direction, and it is obtained by solving the linear
system involving the Hessian matrix and the negative gradient.

Picture.

8

Note that if the Hessian H(x) is positive definite, then this linear system is
guaranteed to have a unique solution (since H(x) is nonsingular) and, in addition,

0 < pT H(x)p = −g(x)T p,

so in this case p is a downhill direction.

If H(x) fails to be positive definite, then the situation is not as nice.

• We may fail to have a solution to the linear system.

• We may walk uphill.

We can also get into trouble if H(x) is close to singular, since in that case it will
be difficult to get a good solution to the linear system using floating point
arithmetic, so the computed direction may fail to be downhill.

Three easy pictures

We illustrate nice and not-nice quadratic models for n = 2 variables.

We’ll draw contour plots of the quadratic model f̂(p). (These are like

topographical maps. We draw lines defining sets {p : f̂(p) = c} for some
constants c.) These are called level curves.

Let’s try to understand what controls the shape of the quadratic model.

Suppose that we solve the eigenvalue problem for H(x):

H(x)u1 = λ1u1 , H(x)u2 = λ2u2 ,

where the λi are (positive) numbers and the ui are vectors that are orthogonal to
each other, normalized so that uT

1 u1 = uT
2 u2 = 1.

Now u1 and u2 form a basis for R2, so any vector can be expressed as a
combination of these two. Let p = α1u1 + α2u2 and g(x) = µ1u1 + µ2u2.

Our quadratic model becomes

f(x + p) = f(x) + pT g(x) +
1
2
pT H(x)p

= f(x) + α1µ1 + α2µ2 +
1
2
(λ1α

2
1 + λ2α

2
2) .

Setting the derivative (with respect to α1 and α2) equal to zero, we obtain

α1 = −µ1/λ1 α2 = −µ2/λ2 .

9

Is this a minimizer of the function? The Hessian is[
λ1 0
0 λ2

]
,

and this is positive definite iff λ1, λ2 > 0.

Case 1: H(x) is positive definite.

Picture.

In this case, the contours are ellipsoids, the function itself has the shape of a
bowl, and the Newton direction p points to the bottom of the bowl. The lengths
of the axes are proportional to 1/

√
λ1 and 1/

√
λ2 .

Case 2: H is positive semi-definite. In this case, one eigenvalue λ2 = 0. The
contours have become so elongated that they fail to close.

We want to define our solution p by

α1 = −µ1/λ1 α2 = −µ2/λ2 .

The definition for α1 is ok, but we are in trouble for α2 unless µ2 = 0; i.e., unless
g has no component in the direction u2.

If µ2 = 0

Picture. Note that the function has the shape of a parabola if we walk
orthogonal to a contour.

If g does have a component in the u2 direction, then there is no solution to our
quadratic model - there is no finite minimizer.

Picture.

Case 3: H is indefinite In this case, λ1 > 0 and λ2 < 0. The function now has a
saddlepoint but no finite minimizer.

Picture.

Bottom line:

10

To run the basic Newton method successfully, we need the Hessian H(x) to be
positive definite everywhere we need to evaluate it.

Later, we will need to put in safeguards to handle these bad cases when H fails
to be positive definite, but for now, we’ll just study the basic Newton algorithm,
in which we step from x to x−H(x)−1g(x).

How well does the Newton Method work?

When it is good, it is very, very good!

Let e(k) = x(k) − x∗ be the error at iteration k.

Theorem: (Fletcher, p46) Suppose f ∈ C2(S) and there is a positive scalar λ
such that

‖H(x)−H(y)‖ ≤ λ‖x− y‖
for all points x, y in a neighborhood of x∗. Then if x(k) is sufficiently close to x∗

and if H(x∗) is positive definite, then there exists a constant c such that

‖e(k+1)‖ ≤ c‖e(k)‖2 .

Proof: Use Taylor series

0 = g(x(k) − e(k)) = g(x(k))−H(k)e(k) + O(‖e(k)‖2) .

We multiply by (H(k))−1. Why is this guaranteed to exist?

0 = −p(k) − e(k) + O(‖e(k)‖)2) .

Now
−p(k) − e(k) = (x(k) − x(k+1))− (x(k) − x∗) = −e(k+1) ,

so ‖e(k+1)‖ = O(‖e(k)‖2). []

This rate of convergence is called quadratic convergence and it is remarkably
fast. If we have an error of 10−1 at some iteration, then two iterations later the
error will be about 10−4 (if c ≈ 1). After four iterations it will be about 10−16,
as many figures as we carry in double precision arithmetic!

How close to Newton do we need to be in order to get fast convergence?

How close to Newton do we need to be?

Definition: A sequence of errors e(k) converges to zero with rate r and rate
constant c if

lim
k→∞

‖e(k+1)‖
‖e(k)‖r

= c

11

(If r = 1, then c should be < 1.)

Newton’s quadratic rate of convergence is nice, but Newton’s method is not an
ideal method:

• It requires the computation of H at each iteration.

• It requires the solution of a linear system involving H.

• It can fail if H fails to be positive definite.

So we would like to modify Newton’s method to make it cheaper and more
widely applicable without sacrificing its fast convergence.

An important result

We can get superlinear convergence (convergence with rate r > 1) without
walking exactly in the Newton direction:

Theorem: (N&S p304) Suppose

• f is defined on an open convex set S with minimizer x∗ ∈ S.

• There exists a finite constant ` such that

‖H(x)−H(y)‖ ≤ `‖x− y‖

for all x, y ∈ S.

• We compute a sequence x(k+1) = x(k) + p(k) so that each iterate is in S,
and none of them equals x∗.

• H(x∗) is positive definite.

Then the sequence {x(k)} → x∗ superlinearly if and only if

lim
k→∞

‖p(k)+H(x(k))−1g(x(k))‖
‖p(k)‖

= 0 .

Proof: See N&S. []

This enables us to

• fix the Newton method, when the Hessian fails to behave, without
destroying the convergence rate.

• incorporate some shortcuts to make each iteration cheaper.

12

We’ll postpone the discussion of shortcuts (quasi-Newton methods) until later.

Making the Newton method safe

When does Newton get into trouble?

We want to modify Newton whenever we are not sure that the direction it
generates is downhill.

If the Hessian is positive definite, we know the direction will be downhill,
although if H is nearly singular, we may have some computational difficulties.

If the Hessian is semidefinite or indefinite, we might or might not get a downhill
direction.

Our strategy:

• We’ll use the Hessian matrix whenever it is positive definite and not close
to singular, because it leads to quadratic convergence.

• We’ll replace H(x) by Ĥ(x) = H(x) + Ê whenever H is close to singularity
or fails to be positive definite.

Conditions on Ĥ:

• Ĥ is symmetric positive definite.

• Ĥ is not too close to singular; in other words, its smallest eigenvalue is
bounded below by a constant bigger than zero.

Modifying Newton’s method

Reference: GMW Chap 4, Murray Chap 4, GM Chap 2.

Strategy 1: Greenstadt’s method. If some eigenvalue is negative or too close to
zero, replace it by δ, where

δ = max(2−t‖H‖∞, 2−t),

where 2−t is machine epsilon, the smallest positive number which, if added to
one, gives a number different from one, and

‖H‖∞ = max
i=1,...,n

n∑
j=1

|hij | .

13

This gives a matrix Ĥ that is positive definite and has bounded condition number.

Greenstadt’s method was the first one. It is very effective but a lot of work!

Strategy 2: Levenberg-Marquardt method. This one was actually proposed for
least squares problems, but it works here, too.

Replace H by
Ĥ = H + γI .

This shifts every eigenvalue up by γ.

How do we choose γ? It is usually done by trial and error: seek a γ so that Ĥ is
positive definite and ‖p(k)‖ ≤ h(k) where {h(k)} is a given sequence of numbers.

Note: If the h’s are small enough, then we can avoid using a line search. (Line
searches will be discussed later, but their disadvantage is that they require the
function to be evaluated many times.)

Strategy 3: Bad Strategies: Note that there are many numerically unstable
alternatives in the literature. Beware!

Strategy 4: Cholesky Strategies: developed by Gill and Murray.

Background: Any symmetric positive definite matrix A can be factored as

A = LDLT

where D is a diagonal matrix and L is lower triangular with ones on its main
diagonal.

Example: a11 a21 a31

a21 a22 a32

a31 a32 a33

 =

 1 0 0
`21 1 0
`31 `32 1

 d1 0 0
0 d2 0
0 0 d3

 1 `21 `31
0 1 `32
0 0 1

=

 d1 d1`21 d1`31
d1`21 d1`

2
21 + d2 d1`21`31 + d2`32

d1`31 d1`21`31 + d2`32 d1`
2
31 + d2`

2
32 + d3

14

so, from the 1st column we obtain

d1 = a11

`21 = a21/d1

`31 = a31/d1

and from the second

d2 = a22 − d1`
2
21

`32 = (a32 − d1`21`31)/d2 .

From the last column, we obtain

d3 = a33 − d1`
2
31 − d2`

2
32 ,

completing the factorization. []

Properties of the Cholesky factorization:

• Set U = DLT . Then U is the matrix obtained by Gauss elimination,
without pivoting, on A.

• The factorization is stable if A is positive definite. This means that there
are bounds on the absolute values of elements in L and D in terms of the
matrix A. (Without this, small errors in A can cause large errors in the
factors.) In particular, the diagonal elements of D are bounded below.

Example: [
1 a
a 1

]
=

[
1 0
a 1

] [
1 0
0 1− a2

] [
1 a
0 1

]
[]

• If A is not positive definite, then we get a zero or negative element on the
diagonal of D.

• The cost of Cholesky is n3/6 + O(n2) multiplications, about half the cost
of Gauss elimination.

Modified Cholesky algorithms

Idea:

• While factoring, if any dii ≤ 0, modify it so that it is positive. This
changes the factored matrix from H to Ĥ.

• If modification is needed, try to keep ‖H− Ĥ‖ small so that we will have
an almost-Newton direction.

15

• To keep close to Newton, we want ‖H− Ĥ‖ = 0 if H is positive definite,

and we want Ĥ to be a continuous function of H.

• Making ‖H− Ĥ‖ = 0 if H is positive definite is not really possible, since we
also need to modify H if any eigenvalue is positive but too close to zero.

• We choose to make Ĥ = H + E, where E is diagonal.

Three ways to modify H using Cholesky

1. Ê = γI for some γ ≥ 0. This is akin to Levenberg-Marquardt.

2. Ê = a general diagonal matrix computed in the course of the Cholesky
factorization.

Reference: For more details, see GMW pp. 109-111, or

Haw-ren Fang and Dianne P. O’Leary, “Modified Cholesky Algorithms: A
Catalog with New Approaches,” Mathematical Programming A, 2007.
DOI:10.1007/s10107-007-0177-6

3. Forsgren, Gill, Murray, SISSC 16 (1995) p139

Perform Cholesky factorization with diagonal pivoting, permuting the
matrix at each step to put the largest remaining diagonal element to the
pivot position.

This postpones the modification and keeps it as small as possible.

Accept the main diagonal element if it is ≥ ν times the largest absolute
value of others in its row. (ν is a parameter between 0 and 1).

When no acceptable element remains, we have[
H11 H12

H21 H22

]
=

[
L11 0
L21 I

] [
D1 0
0 D2

] [
LT

11 LT
21

0 I

]
where D1 is diagonal but D2 is not.

Now replace D2 by a positive definite matrix D̂2 and complete the
factorization.

For this algorithm, there are nice bounds: If Ĥp = −g, then

• The inner product of p with −g is bounded below, so we can’t
approach orthogonality with g.

• The size of p is bounded above, so we don’t get unreasonably large
directions.

Note: This algorithm takes no extra work if we arrange the Cholesky
factorization in outer product form.

16

Unquiz: Write out the FGM algorithm. []

A bonus from these modification methods

In addition to providing a descent direction in case H is indefinite, the Cholesky
methods also provide one if we are at a stationary point (g = 0) that is a saddle
point instead of a minimizer.

In this case, we cannot use the Newton-like direction, since it is zero.

What do we do?

Taylor series says

f(x + p) = f(x) + gT p +
1
2
pT H(x)p + O(‖p‖3) .

Greenstadt method: Choose
p =

∑
i:λi<0

αiui

where the αi are any scalars. Then

pT H(x)p =
∑

i:λi<0

α2
i λi < 0 .

Cholesky methods:

A direction of negative curvature can be computed from the modified part of the
factorization. For the Forsgren et al. method, for example, a direction can be
determined by solving

LT p = r

where r is a vector with at most two nonzero entries: r = eq, if dqq has the
largest absolute value of any entry in D2, and r = eq − sign(dqs)es if dqs is the
largest. Then

pT Hp = pT LDLT p− pT Ep < 0

since both terms are negative.

Therefore, any of these methods can be used to obtain a direction of negative
curvature in case we arrive at a saddle point.

What our algorithm now looks like

Recall: Until x(k) is a good enough solution,

17

Find a search direction p(k).
Set x(k+1) = x(k) + αkp(k), where αk is a scalar chosen to guarantee
that progress is made.

Now we have some details for Newton’s method.
Find a search direction p(k) means

Calculate g(k), H(k).
Factor H(k) = LD̂LT − Ê.
If ‖g(k)‖ < ε and Ê = 0, then halt with an approximate solution.
Otherwise find a direction:

If ‖g(k)‖ > ε, then solve LD̂LT p(k) = −g(k) to get a
downhill direction.
Otherwise get a direction of negative curvature by solving
LT pk = r, with r defined earlier.

What is missing? How long a step should we take in the direction p?

Descent directions and line searches.

A backtracking line search

Reference: Dennis & Schnabel pp. 6-17. Algorithm due to Dennis, More’,
Schnabel.

We take
x(k+1) = x(k) + α(k)p(k) .

How do we choose α(k)?

Let
F (α) = f(x + αp) .

Then
F ′(α) = pT g(x + αp) .

Backtracking line search:

Choose α = 1 (to give the full Newton step).
While α is not good enough,

Choose a new αnew ∈ [0, α] by interpolation, and set
α = αnew.

18

Note: If p is not the Newton direction, then we may need an initial braketing
phase to find a good upper bound on α by testing larger values.

Reference: See Fletcher Section 2.6 for details.

How do we do the interpolation?

• Initially, we know three pieces of information: F (0) = f(x(k)),
F ′(0) = p(k)T g(x(k)), and F (1).

Three pieces of data determine a quadratic model for F :

Fq(λ) = [F (1)− F (0)− F ′(0)]λ2 + F ′(0)λ + F (0) .

The minimizer is

α1 = − F ′(0)
2[F (1)− F (0)− F ′(0)]

,

so we take
αnew = max(α1, 0.1)

(or substitute some other tolerance for 0.1).

• Later, we have four recent pieces of information: F (0), F ′(0), F (α),
F (αold). We already know that a quadratic model does not fit well, so we
try a cubic:

Fc(λ) = aλ3 + bλ2 + F ′(0)λ + F (0) .

The minimizers are

α± =
−b±

√
b2 − 3aF ′(0)
3a

and we take
αnew = max(min(α+, α−), 0.1)

if α± is real, and

αnew = re(α+) = max(−b/3a, 0.1)

otherwise.

How do we decide that α is good enough?

Reference: N&S 10.5, Fletcher pp.26ff.

Example: why descent is not enough. Let f(x) = x2, x(0) = 2,

x(k) =
2k + 1

2k

19

Then the sequence {x(k)} = 2, 3/2, 5/4, . . . gives decreasing values for f but
converges to 1. []

Therefore, we need stronger conditions than descent in order to guarantee
convergence.

Our situation

• Have a downhill direction p, so we know that for very small α,
F (α) < F (0).

• If p = the Newton direction, then we predict that α = 1 is the minimizer.

• We want an upper bound on the αs to consider, since Newton’s method is
based on a quadratic model and is not expected to fit the function well if
we go too far.

• We might have F ′ available.

• We really can’t afford an exact line search. In an exact linesearch we find
the value of α that exactly minimizes f(x + αp). We can do this for
quadratic functions, since in that case a formula for α can be derived, but
in general exact linesearch is impossible and is only interesting because a
lot of theorems demand it.

What do we do?

First idea: Goldstein conditions

Goldstein (1965)

A step αp is acceptable if

1. It gives sufficent decrease relative to its size: F (α) < F (0) + αρF ′(0) for
some fixed ρ ∈ (0, 1/2).

2. It is not too small: F (α) > F (0) + α(1− ρ)F ′(0). (For small α,
F (α) ≈ F (0) + αF ′(0), so these points are unacceptable.)

3. The direction is downhill and bounded away from orthogonality to g:
gT p ≤ −δ‖g‖‖p‖ for some fixed δ > 0.

Picture.

Second idea: Wolfe(1968)-Powell(1976) conditions

A step αp is acceptable if

20

1. It gives sufficent decrease relative to its size: F (α) < F (0) + αρF ′(0) for
some fixed ρ ∈ (0, 1/2).

2. NEW! It is not too small: F ′(α) ≥ σF ′(0) for some fixed σ ∈ (ρ, 1).
Disadvantage over Goldstein: requires derivative evaluation at each step.

3. The direction is downhill and bounded away from orthogonality to g:
gT p ≤ −δ‖g‖‖p‖ for some fixed δ > 0.

Picture.

What do these conditions buy for us?

It can be shown that acceptable points exist as long as the minimizer is finite.

Typical theorem: Global convergence of descent methods. If

• f is continuously differentiable and bounded below,

• g is Lipschitz continuous for all x, i.e., there exists a constant L such that,
for all x and y,

‖g(x)− g(y)‖ ≤ L‖x− y‖

Then either g(k) = 0 for some k or g(k) → 0.

Proof: See Fletcher.

Reference: There is a similar (but less satisfying) theorem on p. 316 of N&S.

Unquiz: Write the algorithm for a backtracking linesearch satisfying the Wolfe
conditions.

[]

Trust regions.

Trust regions: an alternative to linesearch

Reference: Fletcher Chapter 5.

Trust region methods determine α and p simultaneously.

Idea: Use g and H to form a quadratic model

f(x + p) ≈ q(p) = f(x) + pT g +
1
2
pT Hp .

But we should only trust the model when ‖p‖ < h for some small scalar h.

21

Let xnew = x + p∗ where p∗ solves

min
‖p‖≤h

q(p) .

Note: Depending on the norm we choose, this gives us different geometries for
the feasible set defined by ‖p‖ < h.

Still to be determined:

• How to determine h and adapt it.

• How to find p∗.

How to find p∗

The answer changes, depending on norm we choose.

Suppose we choose the infinity norm:

min
|pi|≤h

q(p) .

This is a quadratic programming problem with bound constraints. We’ll study
algorithms for it later.

Unquiz: Solve the trust region problem for the 2-norm:

min
pT p≤h2

q(p) ,

q(p) = f(x) + pT g +
1
2
pT Hp ,

using Lagrange Multipliers.

Note the relationship to the Levenberg-Marquardt algorithm. []

Picture: Dogleg step.

How to choose h

Idea: h determines the region in which our model q is known to be a good
approximation to f :

r ≡ f(x + p)− f(x)
q(p)− q(0)

≈ 1 .

Heuristic suggested by Powell:

22

• If r too small (< 1/4) then reduce h by a factor of 4.

• If r close to 1 (> 3/4) then increase h by a factor of 2.

Note that this can be done by modifying γ, the parameter in the
Levenberg-Marquardt algorithm.

Pitfall in trust region methods: If the problem is poorly scaled, then the trust
region will remain very small and we will never be able to take large steps to get
us close to the solution.

Example: f(x) = f1(x1) + f1(10000x2) where f1 is a well-behaved function. []

Convergence of trust region methods

Typical theorem: Global convergence of trust region methods.
If

• S = {x : f(x) ≤ f(x(0))} is bounded.

• f ∈ C2(S)

Then the sequence {x(k)} has an accumulation point x∗ that satisfies the first-
and second-order necessary conditions for optimality.

Final words

We now know how to recognize a solution and compute a solution using
Newton’s method.

We have added safeguards in case the Hessian fails to be positive definite, and
we have added a linesearch to guarantee convergence.

The resulting algorithm converges rather rapidly, but each iteration is quite
expensive.

Next, we want to investigate algorithms that have lower cost per iteration.

23

