
AMSC 607 / CMSC 764 Fall 2008
HMWK 3: Due October 28, 2pm

Show all work. If you use a reference book, cite it, or you will lose credit!
You may work in groups of up to 4 people. If you do, include a statement,
signed by all members of the group, stating the work done by each person. I
believe that you can almost finish the homework during classtime on Thursday,
October 16.
There may be another assignment before this one is due.

Write a Matlab program using a feasible direction method to solve linear
programming problems

max
x

bTx

ATx ≥ c

where x ∈ Rn and c ∈ Rm with n ≤ m. Assume a constraint qualification.
Write a Matlab function xopt = lpfeasdir(A,b,c,x). The parameters to

your feasible direction algorithm are A, b, c, an initial feasible point x.

• Use qrupdate, qrinsert, qrdelete (instead of the B and N method in
the notes) to update a factorization of the matrix Â corresponding to the
currently active constraints.

• At each iteration, Â gains one row, and it may also lose one: if there is
no feasible downhill direction, remove the constraint corresponding to the
most negative (estimated) Lagrange multiplier.

• The next point is x + αp, where p is determined from solving the system
involving a column of the identity matrix, and α defines the longest step
that is possible without violating any of the constraints. The constraint
that we hit becomes the added one.

• Stop when there is no feasible downhill direction.

• You must apply the feasible direction approach to the problem as written
above, not to the dual problem.

Find one linear programming problem on which to test your algorithm.

Grading: 30 points total.

• 20 points for the efficient implementation of the algorithm as a bug-free
Matlab function, with good documentation for the calling sequence and
the algorithm. “Efficient” means not using an order of magnitude more
computation than necessary.

• 10 points for the script that tests the algorithm.

Note. Let A and B be matrices, and let c be a vector. Make sure you understand
why the statements A*(B*c) and A \ (B*c) take much less time than A*B*c and
A \ B * c, and then use this knowledge in your programming.

1


