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Penalty and Barrier Methods

Reference: N&S Chapter 16

Two disadvantages of feasible direction methods:

• the need to guess the active set.

• the need to get an initial feasible point.

So we again build on our unconstrained algorithms, but in a different way.

Idea:

• We have a collection of methods that work for unconstrained problems:

– Newton’s method

– steepest descent

– quasi-Newton

– ...

• Can we modify them to work when we have constraints?

The plan

• Barrier Methods

• Overcoming Ill-Conditioning in Barrier Methods

• Penalty Methods

• Overcoming Ill-Conditioning in Penalty Methods: Exact Penalty Methods

Barrier Methods

Barrier Methods
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Idea: Suppose we have an initial feasible point.

We want to change the function f to raise a barrier at the boundary.

Picture

The formalism

The problem:
min
x
f(x)

c(x) ≥ 0

The Lagrangian:
L(x,λ) = f(x)− λT c(x)

Barrier function:

Bµ(x) = f(x) + µφ(x)

Possible choices of φ:

• Log barrier:

φ(x) = −
m∑

i=1

log(ci(x))

• Inverse barrier:

φ(x) =
m∑

i=1

1
ci(x)

The severity of the barrier is controlled by the choice of µ:

• large µ: gradual barrier

• small µ: sharp barrier

Picture

The tradeoff
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• If µ is large and the minimizer is near the boundary:

– the barrier function looks very different from f .

• If µ is small and the minimizer is near the boundary:

– steep gradients.

– ill-conditioning and therefore hard to solve the problem.

Nice example in N&S p.534.

Because of this, we usually solve a sequence of problems:

• Start with a large µ to guide us near the solution.

• Gradually reduce µ, using our previous solution as a starting point.

Typical Convergence Result

Theorem: Under the conditions in N&S pp540-541 (continuity of the functions,
bounded level sets, nonempty feasible set with some regularity) , let x(µ) solve
the barrier problem

min
x
Bµ(x) .

Then given a sequence µ1 > µ2 > . . . converging to zero, there exists a
subsequence of {xµi} that converges to a local solution of our problem.

Proof: See book.

Even more important:

If some technical conditions hold (a constraint qualification, and no “accidentally
zero” Lagrange multiplier), then the points x(µ) define a path called the barrier
trajectory.

And this path is differentiable!

(We will use this later when we develop interior point methods.)

For a proof of this result, see N&S p. 532.

A closer look at the log barrier formulation

Bµ(x) = f(x)− µ
m∑

i=1

log(ci(x))
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Notation: To eliminate clutter in the equations, I will abbreviate the summation:

m∑
i=1

=
∑

.

To minimize Bµ with respect to x, we set the derivative of this barrier function
equal to zero:

0 = g(x)− µ
∑ 5ci(x)

ci(x)

= g(x)−
∑ µ

ci(x)
5 ci(x)

But in order to solve our problem, what we really want to do is set the derivative
of the Lagrangian to zero:

0 = g(x)− A(x)T λ = g(x)−
∑

λi 5 ci(x)

So we see that we have estimates of the Lagrange multipliers:

λi ≈
µ

ci(x)
≥ 0 .

This is good, but we haven’t solved our original problem, since

λi(µ)ci(x) = µ, not 0.

So, as µ gets small, we haven’t solved our original problem, but we have solved a
nearby one formed by changing 0 to µ!

A closer look at the inverse barrier function

Bµ(x) = f(x) + µ
∑ 1

ci(x)

Unquiz: Go through a similar derivation for this barrier function, showing that
the Lagrange multiplier estimates are

λi(µ) =
µ

(ci(x))2
.

[]
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Summary of the Barrier formulation: Log barrier function

The solution x(µ) to

min
x
Bµ(x) = min

x
f(x)− µ

∑
log(ci(x))

is the solution to

g(x)− A(x)T λ = 0

λ ≥ 0

λici(x) = µ, i = 1, . . . ,m

and this is a perturbation of order µ of the optimality conditions for our original
problem.

Properties of this formulation:

• We don’t need to choose an active set, so there is no combinatorial
explosion as the number of constraints gets large.

• We have convergence under rather mild conditions.

• We get estimates of the Lagrange multipliers free.

• B is convex if f and −ci are.

• The Hessian matrix of B is ill-conditioned as µ→ 0. This makes it hard to
compute the Newton direction, but we’ll fix this in a minute.

• The barrier function is rather ill behaved for small µ so the line search
must be specially designed:

– A quadratic model does not fit the function well.

– We need to model the singularity in the function.

• We need a strictly feasible initial guess.

Overcoming Ill-Conditioning in Barrier Methods

Note: This covers material similar to N&S 16.3 but is somewhat different.

We’ll use the log barrier function as an example, and consider what we would
need to do in order to compute the Newton direction.

The log barrier function:

Bµ(x) = f(x)− µ
∑

log (ci(x))
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Differentiate with respect to x:

5Bµ = g(x)− µ
∑ 5ci(x)

ci(x)

Calculate the second derivative matrix, recalling that λi = µ/ci(x):

52Bµ = H− µ
∑ [

52ci(x)
ci(x)

− 5ci(x)5 ci(x)T

ci(x)2

]
= H−

∑
λi 52 ci(x) +

1
µ

∑
λ2

i 5 ci(x)5 ci(x)T

≡ HL +
1
µ
AT DA

where D is a diagonal matrix with entries λ2
i .

The first term, HL, is the Hessian of the Lagrangian function, and this is
independent of µ.

The second term is troublesome. If the ith constraint is active at the solution,
then as µ→ 0, λi will be nonzero, so λ2

i /µ→∞.

This causes the Hessian matrix for Bµ to blow up in k < n different directions if
k constraints are active at the solution. This is not good for Newton’s method....

Linear algebra to the rescue

For simplicity, assume that all constraints are active at the solution, and all
λi > 0.

Factor

AT =
[

Q1 Q2

] [
R
0

]
where

• AT : n×m

• Q1 : n×m

• Q2 : n× (n−m)

• R : m×m

• QT Q = I.
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Then

52Bµ = HL +
1
µ
AT DA = HL +

1
µ
Q1RDRT QT

1 .

Now let
Q̃ =

[
Q2 Q1

]
.

Then

Q̃
T
AT DAQ̃ =

[
QT

2

QT
1

]
Q1RDRT QT

1

[
Q2 Q1

]
=

[
0 0
0 RDRT

]
,

so

Q̃
T
52 BµQ̃ = Q̃

T
HLQ̃ +

1
µ

[
0 0
0 RDRT

]
≡ H̃ +

1
µ

[
0 0
0 RDRT

]

Now let’s factor this matrix as

Q̃
T
52 BµQ̃ =

[
I 0
K I

] [
H̃11 H̃12

0 G

]
where H̃ij refers to a block of H̃.

The first block row of this is clearly ok.

Setting the (2,1) block on the left-hand side equal to the block on the right-hand
side yields

H̃21 = KH̃11

so
K = H̃21H̃11

−1

and the conditioning of H̃11
−1 is not affected by µ.

Next, look at the (2,2) block:

H̃22 +
1
µ
RDRT = KH̃12 + G

so

G =
1
µ
RDRT + H̃22 − H̃21H̃11

−1H̃12

→ 1
µ
RDRT

≡ Ĝ
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as µ→ 0. Note that the condition of Ĝ is independent of µ!

So we will replace G by Ĝ in the factorization to get an approximate Newton
direction.

Where are we?

We want to solve
52Bµp = y

where y is the negative gradient of the barrier function.

This is equivalent to solving

Q̃
T
52 BµQ̃(Q̃

T
p) = Q̃

T
y .

How can we (approximately) solve this?

Algorithm:

1. Let ỹ = Q̃
T
y.

2. Solve [
I 0
K I

]
z = ỹ .

Since KH̃11 = H̃21, we can solve this by forming

z1 = ỹ1

H̃11q = z1

z2 = ỹ2 − H̃21q

3. Solve [
H̃11 H̃12

0 Ĝ

]
p̃ = z

by forming

Ĝp̃2 = z2

H̃11p̃1 = z1 − H̃12p̃2

4. Form p = Q̃p̃.
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Then p is the approximate Newton direction and ill-conditioning has been
avoided!

Penalty Methods

We have already developed most of the machinery we need to understand these
methods, and they are not as important in practice as the Barrier methods, so
we’ll cover them in somewhat less detail.

Penalty Methods

If we don’t have an initial feasible point, then none of our previous algorithms
(feasible direction methods, barrier methods) can be applied.

What can we do? Use a penalty method.

Idea: Let
π(x, ρ) = f(x) + ρψ(x)

where ρ is a scalar penalty parameter and

ψ(x) = 0 x feasible
> 0 otherwise

Again we solve a sequence of problems

min
x
π(x, ρi) ,

but now ρi →∞.

Examples of penalty functions:

• Quadratic loss function for equality constraints:

ψ(x) =
1
2
c(x)T c(x)

• Quadratic loss function for inequalities:

ψ(x) =
1
2
c+(x)T c+(x)

where

(c+)i = ci ci < 0
= 0 ci ≥ 0
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• One other loss function:

ψ(x) =
1
γ

∑
|(c+(x))i|γ

for a fixed parameter γ ≥ 1.

Properties

• The sequence of optimal points {x(ρi)} is convergent (under mild
assumptions)

• The points x(ρ) define a trajectory and yield estimates of Lagrange
multipliers.

Example: quadratic loss function for equality constraints

π(x, ρ) = f(x) +
1
2
ρ

∑
ci(x)2

Differentiate:
5π = g(x) + ρ

∑
ci(x)5 ci(x) = 0

Compare with Lagrangian conditions:

0 = g(x)−
∑

λi 5 ci(x),

so our estimates of Lagrange multipliers are

λi(ρ) = −ρci(x) .

[]

Properties:

• The conditioning of the Hessian of the penalty function is increasingly bad
as ρ→∞. (See the example in N&S p.538.)

• For inequality constraints, the second derivative can be discontinuous. This
gives Newton’s method a lot of trouble!
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Overcoming Ill-Conditioning in Penalty Methods: Exact Penalty Methods

Reference: N&S 16.5.

Idea: Construct a penalty problem that is equivalent to the original problem.

Then we don’t need to solve a sequence of problems!

Choice 1

Sacrifice differentiability.

π(x, ρ) = f(x) + ρ
∑

|(c+(x))i|

This function is continuous, but fails to be differentiable when we hit a
constraint.

Lemma: If x∗ satisfies the 2nd order sufficient conditions for optimality, then
there exists a number ρ̄ such that x∗ is an isolated local minimizer of π(x, ρ) for
any ρ greater than ρ̄.

Idea of Proof: See picture. Choose ρ large enough so that π(x, ρ) > f(x∗) for
infeasible points in the neighborhood, and so that x∗ is the local minimizer for
feasible points. []

A subtle point: We can’t make this work with a quadratic penalty function – it is
too flat at the constraint. See the example in N&S p538.

Choice 2

Put the Lagrange multipliers into the function explicitly: Augmented Lagrangian

We’ll use the original function, plus a penalty term, plus the Lagrangian term:

min
x
f(x) +

1
2
ρc(x)T c(x)− λT c(x)

We need to choose ρ large enough to make x∗ an unconstrained minimizer of
this function.
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The resulting algorithm:

Given initial guesses x(0), λ(0), and ρ(0), set k = 0.

We iterate until optimality:

• Determine x(k+1) by minimizing the augmented Lagrangian, fixing
λ = λ(k) and ρ = ρ(k), using your favorite method.

• Get new estimates of the multipliers λ(k+1) and increase ρ(k) to get ρ(k+1).

• Set k = k + 1.

How to estimate the multipliers: Differentiate the augmented Lagrangian that we
just minimized, and evaluate it at x(k+1):

g(x(k+1))− A(x(k+1))T (λ(k) − ρ(k)c(x(k+1))) = 0 ,

so we set
λ(k+1) = λ(k) − ρ(k)c(x(k+1)) .

An alternate interpretation of the augmented Lagrangian method

The iteration is really driven by λ, not ρ.

λ(k+1) = λ(k) − ρ(k)c(x(k+1))

means that we change λ by using the search direction c(x(k+1)) and the step
length parameter ρ(k).

This is steepest ascent on the dual problem

max
λ

min
x
f(x)− λT c(x) +

1
2
ρc(x)T c(x)

since if we differentiate f(x)− λT c(x) + 1
2ρc(x)

T c(x) respect to λ we get

−c(x(λ)) .

For inequality constraints:

min
x
f(x)− µ(k)

∑
(λ(k))i log(µ(k)−1ci(x) + 1)

(See N&S p560)

How do we update λ?

g(x(k+1))− µ(k)
∑

(λ(k))i
1

µ(k)−1ci(x(k+1)) + 1
µ(k)−1 5 ci(x(k+1)) = 0
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so

(λ(k+1))i =
(λ(k))i

µ(k)−1ci(x(k+1)) + 1
.

For augmented Lagrangians ...

... there is a tension between conditioning and convergence:

• fast if ρ(k) large ,

• but ill-conditioned, so hard to get a good solution.

Final Words

These methods still have their place, but their main usefulness to us is as
forerunners of interior point methods.
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