```
AMSC 607 / CMSC 764 Homework 3, Fall 2010
20 points
Due September 28, before class begins.
```

In class, we noted that any symmetric matrix \boldsymbol{A} has an eigendecomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$, where $\boldsymbol{\Lambda}$ is a diagonal matrix containing the eigenvalues and \boldsymbol{U} has the eigenvectors as its columns. Since the eigenvectors are orthogonal, $\boldsymbol{U} \boldsymbol{U}^{T}=\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$.
4.
(a) (5) Consider the trust region step, the solution to

$$
\min _{\boldsymbol{p}} f(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{p}
$$

subject to

$$
\boldsymbol{p}^{T} \boldsymbol{p} \leq \delta
$$

where δ is a given number. Determine the values of α_{i} so that

$$
\boldsymbol{p}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{u}_{i}
$$

(Recall that another way to define the solution is

$$
(\boldsymbol{H}(\boldsymbol{x})+\gamma \boldsymbol{I}) \boldsymbol{p}=-\boldsymbol{g}(\boldsymbol{x})
$$

where γ is the Lagrange multiplier for the problem.)
(b) (5) Use your expression from (a) to show that $\boldsymbol{p}^{T} \boldsymbol{p}$ is a monotonically decreasing function of the Lagrange multiplier, and that the Lagrange multiplier is a nonincreasing function of δ.
(c) (5) Use your expression from (a) to determine the limit of the direction of \boldsymbol{p} as $\delta \rightarrow 0$ and the limit as $\delta \rightarrow \infty$.
(d) (5) Show that

$$
\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\frac{\left(\boldsymbol{y}_{k}-\boldsymbol{B}_{k} \boldsymbol{s}_{k}\right)\left(\boldsymbol{y}_{k}-\boldsymbol{B}_{k} \boldsymbol{s}_{k}\right)^{T}}{\left(\boldsymbol{y}_{k}-\boldsymbol{B}_{k} \boldsymbol{s}_{k}\right)^{T} \boldsymbol{s}_{k}}
$$

satisfies the secant condition and is symmetric if \boldsymbol{B}_{k} is.

