AMSC 607 / CMSC 764 Homework 5, Fall 2010

20 points
Due October 12, before class begins.

7(a) (5 points) Write the KKT conditions for the problem:

$$
\min _{\boldsymbol{p}} f(\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{p}+\frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{p}
$$

subject to

$$
\boldsymbol{p}^{T} \boldsymbol{p} \leq \delta
$$

where δ is a given number.

7(b) (7 points) Solve the problem

$$
\min _{\boldsymbol{x} \in R^{n}} \boldsymbol{c}^{T} \boldsymbol{x}
$$

subject to

$$
\begin{gathered}
x_{1}+\ldots+x_{n}=0 \\
\boldsymbol{x}^{T} \boldsymbol{x}=1
\end{gathered}
$$

7(c) (8 points) Write the KKT conditions for the problem

$$
\min _{\boldsymbol{x}} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}
$$

subject to

$$
\boldsymbol{x}^{T} \boldsymbol{x}=1
$$

where \boldsymbol{Q} is a symmetric matrix. How many stationary points are there? What is the solution to the problem?

