AMSC 607 / CMSC 764 Homework 9, Fall 2010

Due November 16, before class begins.

Note: Both of these are written problems; it's a busy time of the semester and I didn't want to burden you with programming. But if you would like to substitute one or two programming problems, contact me with a proposal.

12. Consider Problem A:

$$
\min _{\boldsymbol{x}} \boldsymbol{x}^{T} \boldsymbol{Q}_{0} \boldsymbol{x}+\boldsymbol{p}_{0}^{T} \boldsymbol{x}+r_{0}
$$

subject to

$$
\begin{aligned}
& \boldsymbol{x}^{T} \boldsymbol{Q}_{1} \boldsymbol{x}+\boldsymbol{p}_{1}^{T} \boldsymbol{x}+r_{1} \leq 0 \\
& \boldsymbol{x}^{T} \boldsymbol{Q}_{2} \boldsymbol{x}+\boldsymbol{p}_{2}^{T} \boldsymbol{x}+r_{2} \leq 0
\end{aligned}
$$

where \boldsymbol{x} is $n \times 1$ and \boldsymbol{Q}_{i} is $n \times n$ and positive semidefinite, for $i=0,1,2$,
12a. (6) Show, directly from the definition of a convex set, that the set of \boldsymbol{x} that are feasible for Problem A is convex. (Therefore, this is a convex programming problem.)
12b. (7) Write Problem A as a semi-definite programming problem (SDP) in primal form (p. 18 of the notes). In other words, define $\boldsymbol{C}, \boldsymbol{X}, \boldsymbol{A}(\boldsymbol{X})$, and \boldsymbol{b}. Hint: Use the eigendecomposition of \boldsymbol{Q}_{i} to write $\boldsymbol{Q}_{i}=\boldsymbol{B}^{T} \boldsymbol{B}$ for some matrix \boldsymbol{B}. (This is problem 8.4, p. 655, from Griva, Nash, and Sofer.)

12c. (7) Prove that if \boldsymbol{X} is primal feasible for an SDP and $(\boldsymbol{y}, \boldsymbol{S})$ are dual feasible, then $\boldsymbol{C} \bullet \boldsymbol{X}-\boldsymbol{b}^{T} \boldsymbol{y}=\boldsymbol{X} \bullet \boldsymbol{S} \geq 0$. (This is problem 8.10, p.656, from Griva, Nash, and Sofer.)
13. Consider Problem B:

$$
\min _{\boldsymbol{x}} \boldsymbol{w}^{T} \boldsymbol{x}
$$

subject to

$$
\begin{gathered}
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} \leq d \\
\boldsymbol{x} \geq \mathbf{0}
\end{gathered}
$$

13a. (7) For $n=2$, sketch the feasible region and the level curves $\boldsymbol{w}^{T} \boldsymbol{x}=$ constant and indicate where the solution point for Problem B is. (I'm not giving you a particular choice of data matrices and vectors, so you are just sketching a "generic" picture to get some intuition for the problem. Choose specific data if it helps you, but it is not required.)
13b. (7) Express Problem B as a SOCP (p. 17 of the notes). In other words, define $\boldsymbol{f}, \boldsymbol{A}_{i}, \boldsymbol{b}_{i}, \boldsymbol{c}_{i}, d_{i}$, and m.

13c. (6) Suppose we do not have software to solve an SOCP. Explain how we can solve Problem B by using a zerofinder (i.e., a program to solve the single nonlinear equation $F(c)=0$) and an algorithm to solve the quadratic programming problem

$$
\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}-d
$$

subject to

$$
\begin{gathered}
\boldsymbol{w}^{T} \boldsymbol{x}=c \\
\boldsymbol{x} \geq \mathbf{0} .
\end{gathered}
$$

