1. (10) Let

$$
f(x)=x^{2}-4
$$

Suppose our guess at the zero of this nonlinear equation is 2.5 . If we apply Newton's method, what would the next guess be?
Answer: We compute $f^{\prime}(x)=2 x$, so

$$
\begin{aligned}
x & \leftarrow x-\frac{x^{2}-4}{2 x} \\
& =2.5-\frac{(2.5)^{2}-4}{5} .
\end{aligned}
$$

Note: This works out to be 2.05. Note that the guess 2.5 has one significant figure, and after 1 iteration we have 2: very fast convergence. This is the basis for the algorithm usually used in the sqrt function in languages like C++, Fortran, and Matlab. The initial guess is obtained by saling and then table look-up.
2. (10) Suppose we want to solve the problem

$$
\min _{x} \frac{1}{2} x_{1}^{2}+\frac{3}{2} x_{2}^{2}+x_{1}-x_{2}+5
$$

and we have the initial guess $x_{1}=2, x_{2}=3$. What is the steepest descent direction from this guess?
Answer: The gradient of the function is

$$
\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+1 \\
3 x_{2}-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right],
$$

so the steepest descent direction is

$$
-\left[\begin{array}{l}
3 \\
8
\end{array}\right]
$$

