AMSC/CMSC $460 \quad$ Quiz $1 \quad$, Fall 2002

For this page of the quiz, assume you have a base 2 computer that stores floating point numbers using a 5 bit normalized mantissa (x.xxxx), a 4 bit exponent, and a sign for each. Assume that all numbers are chopped rather than rounded.

1a. (5) Give the machine representation and a base 10 representation for machine epsilon, the smallest nonzero positive number which, added to 1 , gives a number different from 1.

Answer: Since the machine chops, $1.0000+0.0001=1.0001$, but if anything smaller is added to 1 , the answer will be 1 .

So machine epsilon is $1 / 16$ in decimal, which has a machine representation of +1.0000 for the mantissa and -0100 for the exponent.

1b. (5) Which machine number is closest to π ?
Answer: $3.14159 \ldots=3+1 / 8+\ldots$, which, in binary, is $11.001=1.1001 \times$ 2^{1}.Therefore, 3.125 is the closest machine number, and its machine representation would be +1.1001 for the mantissa and +0001 for the exponent.
2. (5) Suppose I have measured the sides of a rectangle as $3.2 \pm .005$ and $4.5 \pm$.005. Give a bound on the relative error in $A=3.2 * 4.5$ as an approximation to the area of the rectangle.

Answer: The absolute value of the relative error in 3.2 is bounded by $r=$ $.005 / 3.195$. The absolute value of the relative error in 4.5 is bounded by $s=.005 / 4.495$. So the absolute value of the relative error in the answer is (approximately) bounded by $r+s=0.0016+0.0011=.0027$.
3. (5) Define backward error analysis.

Answer: It is the process of bounding the distance between the given problem and the problem actually solved.

