AMSC/CMSC 460 Quiz 2 , Fall 2002
Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university's code of academic integrity in completing the quiz. Use no books, calculators, cellphones, communication with others, scratchpaper, etc.

Name \qquad
Student number \qquad

1. (7) Recall that the polynomial

$$
a_{1} x^{n}+a_{2} x^{n-1}+\ldots+a_{n}
$$

can be evaluated by Horner's rule (nested multiplication) like this:

$$
\begin{aligned}
& p=a_{1} \\
& \text { For } j=2, \ldots, n, \\
& \quad p=p * x+a_{j}
\end{aligned}
$$

end for
Write a program that uses nested multiplication to evaluate
$c_{1}+c_{2}\left(x-z_{1}\right)+c_{3}\left(x-z_{1}\right)\left(x-z_{2}\right)+\ldots+c_{n}\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n-1}\right)$,
where the coefficients c_{i} and the numbers z_{i} are given in arrays c and z.
2. (7) Given that $(x, f(x))=(0,-3),(2,6),(-1,-5)$, compute $f[0,2,-1]$.
3. (6) Write down the Lagrange form of the interpolating polynomial for the data $(x, f(x))=(1,-5),(3,-3)$.

