AMSC/CMSC 460 Quiz 2 , Fall 2002

1. (7) Recall that the polynomial

$$
a_{1} x^{n}+a_{2} x^{n-1}+\ldots+a_{n}
$$

can be evaluated by Horner's rule (nested multiplication) like this:

$$
\begin{aligned}
& p=a_{1} \\
& \text { For } j=2, \ldots, n \\
& \quad p=p * x+a_{j}
\end{aligned}
$$

end for
Write a program that uses nested multiplication to evaluate
$c_{1}+c_{2}\left(x-z_{1}\right)+c_{3}\left(x-z_{1}\right)\left(x-z_{2}\right)+\ldots+c_{n}\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n-1}\right)$,
where the coefficients c_{i} and the numbers z_{i} are given in arrays c and z.

Answer:

$p=c_{n}$
For $j=n-1:-1: 1$,

$$
p=p *\left(x-z_{j}\right)+c_{j} .
$$

end for
2. (7) Given that $(x, f(x))=(0,-3),(2,6),(-1,-5)$, compute $f[0,2,-1]$.

Answer: Divided difference table:
$\begin{array}{rrr}f[x] & \mathrm{f}[\mathrm{x}, \mathrm{y}] & \mathrm{f}[\mathrm{x}, \mathrm{y}, \mathrm{z}] \\ -3 & & \\ 6 & 9 / 2 & \\ -5 & 11 / 3 & 9 / 2-11 / 3\end{array}$
So $f[1,2,3]=9 / 2-11 / 3=5 / 6$.
3. (6) Write down the Lagrange form of the interpolating polynomial for the data $(x, f(x))=(1,-5),(3,-3)$.
Answer:

$$
p(x)=-5 \frac{x-3}{1-3}+(-3) \frac{x-1}{3-1} .
$$

