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Polynomial Interpolation

Read: Chapter 2. Skip: 2.4.2, 2.4.4.

Caution: The numbering of coefficients is inconsistent in the chapter. See the
difference between the top of p. 76 and the bottom. I’ll use the Matlab notation
(top of p. 76) rather than Van Loan’s.

The Plan:

• Why polynomial interpolation is useful.

• Some facts about polynomials.

• Computing interpolating polynomials.

• Evaluating polynomials.

• Existence and uniqueness: Lagrange and Newton form of the polynomial.

• The error formula.

• 2-d interpolation.

Why polynomial interpolation is useful

Motivation

Problem 1: Given some experimental data (e.g., 1000 measurements of mortality
rate as a function of fat consumption, or 20 yearly measurements of amount of
pollution in a river), see how well the data fits a model such as a polynomial or a
sum of exponentials.

Problem 2: Fit a model to data in order to reduce the effects of noise in the
measurements.

We’ll study this in Chapter 7.
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Figure 1: Pollution levels (ppm) vs. year. Does a polynomial fit this data?
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Figure 2: Is a straight line a good model to this data?
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Problem 3: Fit a simple model, such as a polynomial, to a piece of a function
that is expensive to calculate, so that we can use the simple model as a
substitute.

Problem 4: Estimate the integral or the derivative of some function.

Polynomial Interpolation

Why polynomials?

• often a reasonable model.

• cheap to calculate and evaluate.

• important in solving ordinary differential equations (ode’s) and nonlinear
equations and in computing integrals.

How well can polynomials approximate functions?

To find out, we need to drop the requirement of interpolation.

Theorem: (Weierstrass) For all f ∈ C[a, b], for all ε > 0, there exists a degree n
and a polynomial pn such that ||f − p||∞ < ε.

Problems with Weierstrass way of constructing the polynomial:

• The degree can be quite high.

• The polynomial is not guaranteed to interpolate at any given set of points.

The standard polynomial interpolation problem:
Given: (xi, fi), i = 1, . . . , n, xi 6= xj for i 6= j

Find: a polynomial pn−1(x) of degree at most n− 1 such that pn−1(xi) = fi,
i = 1, . . . , n.

Some facts about polynomials

Some facts about polynomials
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Figure 3: Polynomial fit to pollution data
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• A polynomial of degree k has at most k distinct zeroes, unless it is the zero
polynomial z(x) = 0 for all x.

• The sum of two polynomials of degree at most k is a polynomial of degree
at most k.

• There are many ways to write a given polynomial.

For example (x− 2)(x− 5) = x2 − 2x− 5(x− 2) = x2 − 7x+ 10.

We have used three different sets of basis functions in this example:

1. (x− 2)(x− 5), x− 1, and 1.

2. x2, x, and x− 2.

3. x2, x, and 1.

The third basis set is the most familiar one, called the power basis.

How we write a polynomial – what set of basis functions we use – can be
chosen for our convenience!

We can use any basis functions, as long as they are independent.

Computing interpolating polynomials

Computing interpolating polynomials

Suppose we want to compute the polynomial of degree 3 that interpolates the
data (1, 3), (2, 5), (−1, 4), (0, 6). Let’s use the power basis: x3, x2, x, 1, and let
the polynomial be denoted as

p(x) = a1x
3 + a2x

2 + a3x+ a4.

Then the four conditions that our polynomial needs to satisfy are

p(1) = 3 : 13a1 + 12a2 + 1a3 + a4 = 3,

p(2) = 5 : 23a1 + 22a2 + 2a3 + a4 = 5,

p(−1) = 4 : (−1)3a1 + (−1)2a2 + (−1)a3 + a4 = 4,

p(0) = 6 : 03a1 + 02a2 + 0a3 + a4 = 6,

If we write this in matrix form, we have
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For conciseness, we can say
V a = y

where V is the matrix, a is the vector of coefficients of the polynomial, and y is
the set of y coordinates for the data. The x coordinates determine the matrix V :

V =









x3
1 x2

1 x1 1
x3

2 x2
2 x2 1

x3
3 x2

3 x3 1
x3

4 x2
4 x4 1









.

We need to solve this linear system for the 4 values in the vector a.

This is such a commonly occurring problem that Matlab has a special function to
do it:

x = [1 2 -1 0];

y=[3 5 4 6];

a = polyfit(x,y,3)

The third argument to polyfit gives the degree of the polynomial.

The matrix for the interpolation problem

The matrix in our polynomial interpolation problem has a very special form:

V =













xn−1
1 xn−2

1 . . . x1
1 1

xn−1
2 xn−2

2 . . . x1
2 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

xn−1
n xn−2

n . . . x1
n 1













and a special name, a Vandermonde matrix.

(To be precise, a Vandermonde matrix looks like this but with the order of the
columns reversed.)

Evaluating polynomials

Evaluating polynomials
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Now suppose someone asks what is the value of the polynomial at x = 7?

We can determine this by computing

a1 ∗ 7 ∗ 7 ∗ 7 + a2 ∗ 7 ∗ 7 + a3 ∗ 7 + a4.

Unquiz:

• Write an algorithm to implement this for a polynomial of degree n− 1.

• Count the number of multiplications that the program does.

• Think about how we might make the algorithm faster.

Evaluating polynomials using Horner’s rule

Given x, we can evaluate p(x) by the following recursion:

p = a1

For j = 2, . . . , n,

p = p ∗ x+ aj .

end for

Unquiz: Count the number of multiplications and compare with the previous
algorithm.

Existence and uniqueness: Lagrange and Newton form of the polynomial

Existence of interpolation polynomial

Can we guarantee that we can always find a unique polynomial of degree n− 1
that interpolates any given set of n data points?

In order to guarantee this, we would have to know that the linear system of
equations V a = y always has one and only one solution. In other words, we
would need to know that V is a nonsingular matrix.

Although it is true that V is always nonsingular, as long as the values x1, . . . xn

are distinct, this is not so easy to prove. So we use the fact that we can write the
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Figure 4: L5,1 and L5,3 for interpolation points 1, 2, 3, 4, 5.

polynomial in any basis, and choose one more convenient for the proof, in order
to show existence. Then we will show uniqueness using properties of polynomials.

The most convenient set of basis functions for this proof: Lagrange basis: for
k = 1, 2, . . . , n

Ln,k(x) =

∏n

i=1,i6=k(x− xi)
∏n

i=1,i6=k(xk − xi)

Ln,k is an interesting polynomial:

• Ln,k is a polynomial of degree n− 1.

• Ln,k(xk) = 1 and Ln,k(xi) = 0, for i 6= k.
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The Lagrange form of the interpolating polynomial

Let

pn−1(x) =

n
∑

i=1

fiLn,i(x) .

Then pn−1(x) is a polynomial of degree n− 1, and pn−1(xi) = fi.

So existence of the Lagrange interpolating polynomial is assured. []

Unquiz: Write the Lagrange form of the interpolating polynomial for the data
(1, 3), (2, 5), (−1, 4), (0, 6).

Uniqueness of the Lagrange interpolating polynomial

We know that the interpolating polynomial exists.

Suppose there are two polynomials pn−1 6= qn−1 and each of them solves the
interpolation problem.

So the polynomials satisfy pn−1(xi) = qn−1(xi) = fi, i = 1, . . . , n.

So pn−1 − qn−1, also a polynomial of degree n− 1, has n distinct roots.
Therefore, pn−1 − qn−1 must be the zero polynomial, so pn−1 = qn−1.

[]

Remaining tasks:

We now have existence and uniqueness of the solution to the interpolation
problem.

We need

• an alternate representation for the interpolation polynomial.

• a rate of convergence of the polynomial to a function that we are
approximating.

A second convenient basis: The Newton basis
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Let

φ0(x) = 1 ,

φj(x) = (x− x1)(x− x2) . . . (x− xj) , j = 1, . . . , n

Note that φj is a polynomial of degree j.

We will express the interpolating polynomial as a weighted sum of these basis
functions.

Define f [x1, . . . , xj ] to be the coefficient of φj−1 in the interpolating polynomial.
We will call the jth coefficient the jth divided difference.

Then

pn−1(x) = f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2)

+ . . .+ f [x1, x2, x3, . . . , xn](x− x1)(x− x2) . . . (x− xn−1)

Our task: determine these coefficients and their properties.

What is a divided difference?

Let I = [minj xj ,maxj xj ], and assume that f ∈ Cn[I].

Property: If we reorder the points, the divided difference remains the same.

Proof: f [x1, x2, x3, . . . , xn] is the coefficient of xn−1 in the interpolating
polynomial. Since the polynomial is unique, the order of the points cannot
matter. []

Property: If x1 6= xn, then

f [x1, . . . , xn] =
f [x2, . . . , xn] − f [x1, . . . , xn−1]

xn − x1
.

Note: This will be our computational formula!
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Proof: Let p̂n−3 be the polynomial that satisfies all of the interpolation
conditions except those for x1 and xn. By uniqueness,

pn−1(x) = p̂n−3(x) + f [x2, . . . , xn−1, x1](x− x2) . . . (x− xn−1)

+f [x2, . . . , xn−1, x1, xn](x− x1) . . . (x− xn−1)

= p̂n−3(x) + f [x2, . . . , xn−1, xn](x− x2) . . . (x− xn−1)

+f [x2, . . . , xn−1, xn, x1](x− x2) . . . (x− xn)

Therefore,

f [x1, . . . , xn](x− x2) . . . (x− xn−1)[(x− x1) − (x− xn)] =

−f [x1, . . . , xn−1](x− x2) . . . (x− xn−1) + f [x2, . . . , xn](x− x2) . . . (x− xn−1) ,

so, after dividing by (x− x2) . . . (x− xn−1), we obtain

f [x1, . . . , xn][(x− x1) − (x− xn)] = −f [x1, . . . , xn−1] + f [x2, . . . , xn] . []

Computing the polynomial

See powerpoint presentation.

The error formula

The error formula

Recall Rolle’s theorem: If f(a) = f(b), then there exists ψ ∈ (a, b) such that
f ′(ψ) = 0.

Theorem: If f ∈ Cn[I], then

f(x) − pn−1(x) =
(x− x1) . . . (x− xn)f (n)(ξ)

n!

for some point ξ in the interval containing I and x.

Proof: Given x, consider the function

E(t) = f(t) − p(t) − cL(t)

where c is a constant

c =
f(x) − p(x)

(x− x1) . . . (x− xn)

and
L(t) = (t− x1) . . . (t− xn) .

Note that E(x) = 0 and E(xi) = 0, i = 1, . . . , n.

Therefore, by Rolle’s Theorem, in between each of these zeros, E ′ has a zero. So
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• E′ has at least n zeroes,

• E′′ has at least n− 1 zeroes,

• . . .

• E(n) has at least 1 zero, call it ξ.

Let’s consider E(n).

• Observe that p(n) = 0 since p is a polynomial of degree n− 1.

• L(n)(t) = n!.

Therefore,
0 = E(n)(ξ) = f (n)(ξ) − cn!

Using our definition of c, we obtain

f(x) − p(x) = f (n)(ξ)
(x− x1) . . . (x− xn)

n!
.

[]

We can get similar results for f ′(x) − p′(x).

Note: Let’s derive an alternate form of the error, that will be useful to us when
we study numerical integration. If we write down the polynomial that
interpolates f at x1, . . . , xn and also at x̂, we get

p̂(x) = pn−1(x) + f [x1, . . . , xn, x̂](x− x1) . . . (x− xn) .

Then, since p̂(x̂) = f(x̂), we have

f(x̂) − pn−1(x̂) = f [x1, . . . , xn, x̂](x̂− x1) . . . (x̂− xn)

Therefore,

f [x1, . . . , xn, x̂] =
f (n)(ξ)

n!

for some point ξ in the interval I.

Evaluating Newton polynomials using Horner’s rule

For conciseness, let ck ≡ f [x1, . . . , xk].

Then, given x, we can evaluate pn−1(x) by the following recursion:

p = cn

For j = n− 1, . . . , 1,
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p = p ∗ (x− xj) + cj .

end for

Polynomial approximation

There exist functions for which polynomial interpolation does not get closer to
the function as the number of interpolation points increases, because the
derivatives are not well-behaved.

Van Loan gives an example, the Runge function, p. 91.

2-d interpolation

Interpolation in 2 dimensions

Suppose we want a polynomial of two variables that satisfies

p(0, 0) = 1

p(0, 1) = 2

p(1, 0) = −1

p(1, 1) = 6

Then we need a polynomial with 4 parameters: for example:

p(x, y) = c1 + c2x+ c3y + c4xy

Unquiz: Find the conditions that these four coefficients must satisfy.

Final Words:

• Vandermonde matrices are very ill-conditioned. (We’ll illustrate this in
Chapter 7.) Therefore, the power basis is not a good one to work with.

• Polynomial interpolation should not be used unless you expect the function
to be modeled very well by a low-order polynomial!

• Polynomial interpolation is critical in many applications: numerical
integration, solution of differential equations, solution of nonlinear
equations, etc. In each of these cases, the interval is very short, so a
polynomial is a good model!
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