

CMSC/AMSC 460 Fall 2007

Homework 3

We want to estimate the area of the elephant “elephant.tif” using three approaches. For this
purpose, we define a function f(x,y)=1 if (x,y) is inside the elephant and zero otherwise. Then, we
find the area of the elephant using double integral over f(x,y) for x=[0,289] and y=[0,417].

To construct such f(x,y) function we need to define a proper threshold to separate the pixels of the
elephant image in two groups of background and elephant area.

Following m-file gives us a sense of a proper threshold by plotting the area of elephant vs.
threshold. (The area of elephant for each threshold is defined by summation over f(x,y))

clear all
clc
I = imread('elephant.tif');
k=1;
for Th = 150:250;
 f_xy = I;
 f_xy(I<Th) = 1;
 f_xy(I>=Th)= 0;
 ElephantArea (k) = sum(sum(f_xy))/(289*417);
 k=k+1;
end
plot(150:250,ElephantArea3)

150 160 170 180 190 200 210 220 230 240 250

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

A
re

a
of

 e
le

ph
an

t

The range shown by arrow is proper for defining threshold and results in the following separated
image. I chose Th= 200.

As can be seen in this image, there are some pixels that have been misclassified. This would be a
source of error in our area estimation

Now, we write our program for area estimation.

% This program estimates the area of the elephant.tif
% I(f), using three approaches:
% 1- nested calls to quad
% 2- dblquad
% 3- summation over the function f(x,y)
% f(x,y) = 1 if (x; y) is inside the elephant
% = 0 otherwise.
%
% Written by Sima Taheri
% Date: 10/12/07
%
% Input : --
% Output: I_f: Estimates area of elephant by three methods
% t : Elapsed time for each estimation

clc
close all
clear all

% Load the elephant picture stored in elephant.tif
% and define it as a global variable
global I
I = imread('elephant.tif');

% Measure cost time using tic and toc
% 1- nested calls to quad
tic
q1 = quad (@g,1,289);
ElephantArea1 = q1/(289*417);
t1 = toc;

% 2- dblquad
tic
q2 = dblquad (@f,1,289,1,417);
ElephantArea2 = q2/(289*417);
t2 = toc;

% 3- Simple summation
tic
Th = 200;

% Define f(x,y)
f_xy = I;
f_xy (I<=Th) = 1;
f_xy (I>Th) = 0;

ElephantArea3 = sum(sum(f_xy))/(289*417);
t3 = toc;

disp('Area of the elephant and the elapsed time')
disp('for three different methods')
disp(' ')
disp(' Method Area Elapsed time')
disp('---')
disp(sprintf(' Nested quad %7.3e %7.3e n',[ElephantArea1; t1]))
disp(sprintf(' Dblquad %7.3e %7.3e \n',[ElephantArea2; t2]))
disp(sprintf(' Summation %7.3e %7.3e \n',[ElephantArea3; t3]))

%--
% Define function g(x) for nested quad
function t=g(x)
global myx

for i=1:length(x)
 myx=x(i);
 t(i) = quad (@h2,1,417);
end

%--
% Define function h(y) for nested quad
function t = h(y)
global myx I

Th = 200;
t = zeros(1,length(y));
for i = 1:length(y)
 if I(round(myx),round(y(i))) < Th
 t(i) = 1;
 else
 t(i) = 0;
 end
end

%--
% Define function f(x,y) for dblquad
function t = f(x,y)
global I

Th = 200;

t = zeros(1,length(y));
for i=1:length(x)
 if I(round(x(i)),round(y)) < Th
 t(i) = 1;
 else
 t(i)=0;
 end
end

Output:

Area of the elephant and the elapsed time
for three different methods

 Method Area Elapsed time
 --
Tol = 1e-6 Nested quad 5.217e-001 3.178e+002
Tol = 1e-7 & Nested quad 5.386e-001 4.717e+002
 1e-8

 Dblquad 5.627e-001 2.777e+002

 Summation 5.593e-001 8.608e-003

The default tolerance in both quad and dblquad functions is 1.0e-6. Therefore, the absolute error
for dblquad is 1.e-6/(289*417). But for quad, it is a bit more complicated. The outer quad has an
absolute error of 1.e-6, but the function evaluation in the inner quad is "noisy", also with errors of
size 1.e-6, so the combined error is larger than 1.e-6/(289*417). So, it would be better to ask for
higher precision in the inner quad than in the outer, to reduce the effects of the noisy function

For quad we also checked the result when tol is set to 1e-8 in the inner quad and to 1e-7 in the
outer quad. As we can see, the new result of quad more similar to the results of dblquad and also
the summation function. But smaller tol causes more computation time. Therefore, there is a
trade-off between accuracy and cost.
For both quad and dblquad functions the number of function evaluations is 10,000+.

How you decided on the additional method?

The additional method should be a ground truth for our estimation in order to enable us to
evaluate our estimations using quad and dblquad functions. Therefore, I chose it as the
summation over the elements of matrix f(x,y). Since f(x,y)=1 inside the elephant and =0
otherwise, summation over it gives us a very good estimation of the area ,considering the
thresholding. Now we can compare our results from quad and dblquad methods with this new
result.

Why each method works well or does not work well?

Regardless of thresholding error that is almost the same for all methods, among these three
methods, third one gives us the best estimation of the area, then dblquad gives us nearest result to
the third one and after that is the quad method. Although dblquad uses nested quad in some sense,
it works better than nested quad since it has been originally designed for double integral
computation. Moreover, as I mentioned before, the absolute error of nested quad is larger than
dblquad.

Your assessment of sources of error and which estimate is best?

- One source of error is (as mentioned before) the image thresholding which misclassified some
pixels.
- Other source of error is due to the quad and dblquad functions which have error in their integral
estimations. This error is related to the tol parameter. Larger values of tol result in fewer function
evaluations and faster computation, but less accurate results.
- Function quad is fitting a parabola and assuming that the function is continuous and has
continuous derivatives. But our function is discontinuous -- jumping from 0 to 1 at the borders of
the elephant --so the error estimate should not be trusted. This is another source of error.
- Because the function is not continuous, we would expect quad8 and quadl to give poor results.
That is why the simple summation program is probably more reliable. But even after image
manipulation there is error -- we assign each pixel (array value) to be either "in" or "out" of the
elephant, and instead, the boundary runs through the pixel, with some percentage "in" and the rest
"out". So there is error proportional to the number of pixels on the boundary of the elephant.

Optional

We can also perform some image manipulation in Matlab (and also minor manipulation in paint)
to find the area of elephant with better estimation.

I = imread('elephant.tif');
temp = I;

Th=200;
I(temp<Th) = 1;
I(temp>=Th) =0;

imshow(I*255)
Area1 = sum(sum(I))

I1 = bwmorph(I,'close');
I2 = bwfill(I1,'holes');
figure(3)
imshow(I2*255)
Area = sum(sum(I2))

Real area of elephant = 0.5722

