
% CMSC/AMSC 460 Fall 2007
% Homework 7
%
% Purpose: Practice in different computational methods like: ODE,
% spline interpolation, and solution of non-linear system
% We want to trace a sound ray in ocean water, z(x) is the depth of
% the ray when it is a horizontal distance x from the source.
%
% Sima Taheri, 4 Dec. 2007
%
% Input:
% c: The speed of sound (in ft/sec) at some depth values z.
% z: Given depth values
% z0: Initial depth of the ray
% Theta0 : Initial angle between the tangent to z(x) and the
% horizontal axis.
% tan(theta) = dz/dx
% a: Constant value in Snell’s Law
% a = cos(theta0)/c(z0)
%
% A sound source at a depth of z0=2000 ft transmits to
% a receiver xhat=24 miles away, at a depth of 3000 ft
% We want to have,
%
% Output
% Part(a): Plot of z(x) for x\in[0,24mi] when theta0=5.4 degree
% Part(b): A table of values of z(xhat)-3000 for theta0 in the range
% -10 to 10 degrees when xhat=24mi.
% Part(c): 4 rays with angles between -10 and 10 degrees that pass
% through the receiver at xhat=24mi.
%
% Matlab Functions: ODE45, fzero
clc
clear all

%% Part (a)

global pp
% Given values for c(z)
z = [0:500:4000, 5000:1000:12000]';
c = [5042 4995 4948 4887 4868 4863 4865 4869 4875 ...
 4875 4887 4905 4918 4933 4949 4973 4991]';
% Spline coefficients
pp = spline(z,c);

% Radian = pi*Degree/180;
Theta0 = pi*5.4/180;
% to have the second order derivative of z we define the
% initial condition [z0 ; dz/dx(0)=tan(Theta0)]
[xout,zout] = ode45(@zdoublep,[0,24*6076],[2000;tan(Theta0)]);
plot (xout,zout(:,1))
grid
title ('z(x)')
xlabel ('x (feet), horizontal distance to the sound source')
ylabel('z (feet), depth under the ocean surface')

%% Part (b)
k=1;
out = zeros(1,21);
for theta = -10:10
 out(k) = depth(theta);
 k = k+1;
end;
% Table
theta = (-10:10);
disp ('Theta z(xhat)-3000');
disp ('-------------------------');
disp(sprintf(' %2d %5.3f \n',[theta;out]))

%% Part (c)
% Rays that pass through the receiver have z(xhat)-3000=0
% So, we want to find 4 values for theta for which depth function
% gives zero output
%
% Find appropriate starting values for fzero.
% These starting values correspond to zero crossings of out
temp = out>0;
init = theta(temp(1:end-1)-temp(2:end)~=0);

Theta = zeros(size(init));
for i=1:length(init)
 Theta(i) = fzero(@depth,init(i));
end

% Plot those sound rays
for i=1:length(init)
 [xout,zout] = ode45(@zdoublep,[0,24*6076],[2000;tan(pi*Theta(i)/180)]);
 plot (xout,zout(:,1));
 hold on
end
Theta
grid
title ('z(x)')
xlabel ('x (feet), horizontal distance to the sound source')
ylabel('z (feet), depth under the ocean surface')

%%%
%%%
function out = depth(theta)
% out = depth(theta)
% This function traces the sound ray transmitted from a
% sound source at a depth of z0 = 2000 ft to a receiver xhat =24 miles away,
% with the initial angle theta
% then returns the value out = z(xhat)-3000.

xhat = 24*6076; %feet
[xout,zout] = ode45(@zdoublep,[0,xhat],[2000;tan(pi*theta/180)]);
out = zout(end,1)-3000;

%%%
%%%
function out = zdoublep (x,y)
% out = zdoublep (x,y)
% To have the second order derivative of z we define
% a new variable y = [z;dz/dx];
% Therefore the output will be out=[dz/dx,d2z/dx2]
% Matlab Functions: Spline, Myppval
global pp

z = y(1);
dzdx = y(2);

% Constant a
a = (cos(pi*5.4/180)/4868);

% Evaluate c(z) and c'(z)
% To have the spline interpolation of c'(z), we use the coefficient of
% cubic spline to build the quadratic polynomial of c'(z)
% In each interval [xl,xu], the piecewise cubic spline interpolation
% computes the coefficients [a0,a1,a2,a3] of
% c(z)=a0+a1(x-x1)+a2(x-xl)^2+a3(x-x3)^3
% So we can compute c'(z) as
% c'(z)=a1+2*a2(x-xl)+3*a3(x-x3)^2
% we modify the Matlab ppval function
% to return both function value and derivative.

[cz,czp] = Myppval(pp,z);

% Output
out(1) = dzdx;
out(2) = -czp./(a^2*cz^3);
% output must be a vector
out = out';

%%%
%%%
function [v,vp]=Myppval(pp,xx)
% Modifications have been separated by stars

if isstruct(xx) % we assume that ppval(xx,pp) was used
 temp = xx; xx = pp; pp = temp;
end

ndimsxx = ndims(xx);
isvectorxx = isvector(xx) && ~isscalar(xx);
% obtain the row vector xs equivalent to XX
sizexx = size(xx); lx = numel(xx); xs = reshape(xx,1,lx);
% if XX is row vector, suppress its first dimension
if length(sizexx)==2&&sizexx(1)==1, sizexx(1) = []; end

% if necessary, sort xs
ixexist = false;
if any(diff(xs)<0)
 [xs,ix] = sort(xs);
 ixexist = true;
end

% take apart PP
[b,c,l,k,dd]=unmkpp(pp);

% for each data point, compute its breakpoint interval
[ignored,index] = sort([b(1:l) xs]);
index = reshape(find(index>l),1,lx)-(1:lx);
index(index<1) = 1;

% now go to local coordinates ...
xs = xs-b(index);

d = prod(dd);
if d>1 % ... replicate xs and index in case PP is vector-valued ...
 xs = reshape(xs(ones(d,1),:),1,d*lx);
 index = d*index; temp = (-d:-1).';
 index = reshape(1+index(ones(d,1),:)+temp(:,ones(1,lx)), d*lx, 1);
else
 if length(sizexx)>1, dd = []; else dd = 1; end
end

% ... and apply nested multiplication:
v = c(index,1);
for i=2:k
 v = xs(:).*v + c(index,i);
end

%*****************************
%*****************************
% c'(z)=a1+2*a2(x-xl)+3*a3(x-x3)^2
vp =(k-1)*c(index,1);
for i=2:k-1
 vp = xs(:).*vp + (k-i)*c(index,i);
end
%*****************************
%*****************************

v = reshape(v,d,lx);
vp = reshape(vp,d,lx);
if ixexist, v(:,ix) = v; end
v = reshape(v,[dd,sizexx]);
vp = reshape(vp,[dd,sizexx]);

if isfield(pp,'orient') && strcmp(pp.orient,'first')
 % spline orientation is returns size(yi) == [d1 ... dk m1 ... mj]
 % but the interp1 usage prefers size(yi) == [m1 ... mj d1 ... dk]
 if ~(isempty(dd) || (isscalar(dd) && dd == 1))
 % The function is non-scalar valued
 if isvectorxx
 permVec = [ndims(v) 1:(ndims(v)-1)];
 else
 permVec = [(ndims(v)-ndimsxx+1) : ndims(v) 1:(ndims(v)-ndimsxx)];
 end
 v = permute(v,permVec);
 end
end

%%%
%%%
%%%

% An alternative to modify ppval for computing c'(z) is to use
% Matlab’s function unmkpp and mkpp to give the coefficients
% so that we can construct the derivative.
pp = spline(z,c);
[breaks,coefs] = unmkpp(pp);
Ncoefs(:,1) = 3*coefs(:,1);
Ncoefs(:,2) = 2*coefs(:,2);
Ncoefs(:,3) = coefs(:,3);
Npp = mkpp(breaks,Ncoefs);
czp = ppval(Npp,z);

���������

	
����

��

�

	
�����
��

Theta z(xhat)-3000

 -10 2137.563
 -9 639.249
 -8 -17.127
 -7 -1627.385
 -6 -1324.147
 -5 -1377.331
 -4 515.244
 -3 169.843
 -2 199.218
 -1 112.127
 0 269.458
 1 418.436
 2 652.632
 3 928.727
 4 -918.275
 5 -495.288
 6 469.313
 7 385.961
 8 -1692.916
 9 -1820.215
 10 -1005.843
�

0 5 10 15

x 10
4

1000

2000

3000

4000

5000

6000

7000

z(x)

x (feet), horizontal distance to the sound source

z
(f

ee
t)

, d
ep

th
 u

nd
er

 th
e

oc
ea

n
su

rf
ac

e

	
�����
��

���������	
��������
���

�

0 5 10 15

x 10
4

1000

2000

3000

4000

5000

6000

7000

8000

x (feet), horizontal distance to the sound source

z
(fe

et
),

de
pt

h
un

de
r t

he
 o

ce
an

 s
ur

fa
ce

z(x)

θ=-8.015

θ=-4.2067

θ=3.7734

θ=5.3911

θ=7.219

