

What does a numerical analyst do?

- -- design algorithms and analyze them.
- -- develop mathematical software.

1999 - 2006

-- answer questions about how accurate the final answer is.

Dianne P. O'Leary

11

What does a computational scientist do?

- -- works as part of an interdisciplinary team.
- -- intelligently uses mathematical software to analyze mathematical models.

1999 - 2006

Dianne P. O'Leary

12

Floating point representation

Example: Suppose we have a machine with d = 5, m = -15, M = 15. $15 \times 2^{10} = 1111_2 \times 2^{10} = 1.111_2 \times 2^{13}$ mantissa z = +1.1110exponent p = +1101 $15 \times 2^{-10} = 1111_2 \times 2^{-10} = 1.111_2 \times 2^{-7}$ mantissa z = +1.1110exponent p = -01111999-2006 Dianne P. O'Leary 28

Floating point standard	
On most machines today, single precision: $d = 24$, $m = -126$, $M = 127$	
double precision: d = 53, m = -1022, M = 1023.	
(And the representation is 2's complement, not sign-magnitude, so that the number $- x $ is stored as 2^d - where d is the number of bits allotted for its representation	x , on.)
1999 - 2006 Dianne P. O'Leary 3	30

Floating point addition	
Machine arithmetic is more complicated for floating point.	
Example: In fixed point, we added 3 + 10. Here it is in floating point:	
$\begin{array}{rl} 3 = & 11 \mbox{ (binary)} = 1.100 2^1 z = 1.100, & p = 1 \\ 10 = 1010 \mbox{ (binary)} = 1.010 2^3 z = 1.010, & p = 11. \end{array}$	
1. Shift the smaller number so that the exponents are equal $z = 0.0110$ p = 11	qual
2. Add the mantissas z = 0.0110 + 1.010 = 1.1010, p = 11	
3. Shift if necessary to normalize.	31
2 = 0.0110 + 1.010 = 1.1010, p = 11 3. Shift if necessary to normalize. 1999 - 2006 Dianne P. O'Leary	31

Roundoff in Floating point addition

Sometimes we cannot store the exact answer. Example: $1.1001 \times 2^0 + 1.0001 \times 2^{-1}$	
1. Shift the smaller number so that the exponents are equal $z = 0.10001$ $p = 0$	
2. Add the mantissas	
0.10001	
+ 1.1001	
= 10.00011, p = 0	
3. Shift if necessary to normalize: 1.000011 x 2 ¹	
But we can only store 1.0000×2^{11} The error is called roundof	f.
1999 - 2006 Dianne P. O'Leary 32	

Numerical Analysis vs. Analysis

Mathematical analysis works with computations involving **real** or **complex** numbers.

Computers do not work with these; for instance, they do not have a representation for the numbers π or e or even 0.1 .

Dealing with the finite approximations called **floating point numbers** means that we need to understand **error and its propagation.**

39

Cancellation example
Example : Find the roots of $x^2 - 56x + 1 = 0$.
Usual algorithm: $x_1 = 28 + sqrt(783) = 28 + 27.982$ (± .0005) = 55.982 (± .0005)
x ₂ = 28 - sqrt(783) = 28 - 27.982 (± .0005) = 0.018 (± .0005)
The absolute error bounds are the same, but the relative error bounds are 10 ⁻⁵ vs02!
1999 - 2006 Dianne P. O'Leary 47

