
1

1999 - 2006 Dianne P. O'Leary 1

Notes for Part 1 of

CMSC 460

Preliminaries:

• Mathematical modeling

• Computer arithmetic

• Errors

Dianne P. O’Leary

1999 - 2006 Dianne P. O'Leary 2

Arithmetic and Error

What we need to know about error:

-- how does error arise

-- how machines do arithmetic

-- fixed point arithmetic
-- floating point arithmetic

-- how errors are propagated in calculations.

-- how to measure error

1999 - 2006 Dianne P. O'Leary 3

How does error arise?

1999 - 2006 Dianne P. O'Leary 4

How does error arise?

Example: An engineer wants to study the stresses

in a bridge.

2

1999 - 2006 Dianne P. O'Leary 5

Measurement error

Step 1: Gather lengths, angles, etc. for girders and wires.

1999 - 2006 Dianne P. O'Leary 6

Modeling error

Step 2: Approximate system by finite elements.

1999 - 2006 Dianne P. O'Leary 7

Truncation error

Step 3: Numerical analyst develops an algorithm: the stress

can be computed as the limit (as n becomes infinite) of some
function G(n).

Can’t take this limit on a computer, so decide to use G(150).

G(1), G(2), G(3), G(4), G(5), ...

1999 - 2006 Dianne P. O'Leary 8

Roundoff error

Step 4: The algorithm is programmed and run on a computer.

We need π. Approximate it by 3.1415926.

3 1 4 1 5 9 2 6 5 3 5 ...
.

3

1999 - 2006 Dianne P. O'Leary 9

Sources of error

1. Measurement error

2. Modeling error

3. Truncation error

4. Roundoff error

1999 - 2006 Dianne P. O'Leary 10

No mistakes!

Note: No mistakes:

• the engineer did not misread ruler,

• the programmer did not make a typo in the definition of π,

• and the computer worked flawlessly.

But the engineer will want to know what the final answer
has to do with the stresses on the real bridge!

1999 - 2006 Dianne P. O'Leary 11

What does a numerical

analyst do?

-- design algorithms and analyze them.

-- develop mathematical software.

-- answer questions about how accurate the final answer is.

1999 - 2006 Dianne P. O'Leary 12

What does a computational

scientist do?

-- works as part of an interdisciplinary team.

-- intelligently uses mathematical software to analyze
mathematical models.

4

1999 - 2006 Dianne P. O'Leary 13

How machines do

arithmetic

1999 - 2006 Dianne P. O'Leary 14

Machine Arithmetic:

Fixed Point

How integers are stored in computers:

Each word (storage location) in a machine contains a fixed
number of digits.

Example: A machine with a 6-digit word might represent
1985 as

0 0 1 9 8 5

1999 - 2006 Dianne P. O'Leary 15

Fixed Point:

Decimal vs. Binary

0 0 1 9 8 5

Most calculators use decimal (base 10) representation.

Each digit is an integer between 0 and 9.

The value of the number is

1 x 10 + 9 x 10 + 8 x 10 + 5 x 10 .
3 2 1 0

1999 - 2006 Dianne P. O'Leary 16

Fixed Point:

Decimal vs. Binary

0 1 0 1 1 0

Most computers use binary (base 2) representation.

Each digit is the integer 0 or 1.

If the number above is binary, its value is

1 x 2 + 0 x 2 + 1 x 2 + 1 x 2 + 0 x 2 . (or 22 in base 10)
4 3 2 1 0

5

1999 - 2006 Dianne P. O'Leary 17

Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+

Note the “carry” here!

0 + 0 = 0
0 + 1 = 1

1 + 0 = 1
1 + 1 = 10 (binary) = 102 = 2
1 + 1 + 1 = 11 (binary)=112 = 3

1999 - 2006 Dianne P. O'Leary 18

Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+

Note the “carry” here!

In decimal notation, 3

+10

=13

1999 - 2006 Dianne P. O'Leary 19

Representing negative

numbers

0 1 0 1 1

1 1 0 1 1

Computers represent negative numbers using
“one’s complement”, “two’s complement”,
or sign-magnitude representation.

Sign magnitude is easiest, and enough for us:
if the first bit is zero, then the number is positive.

Otherwise, it is negative.

Denotes +11.

Denotes - 11.

1999 - 2006 Dianne P. O'Leary 20

Range of fixed point

numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 = 15

6

1999 - 2006 Dianne P. O'Leary 21

Range of fixed point

numbers

Largest 5-digit (5 bit) binary number:

Smallest:

0 1 1 1 1 = 15

1999 - 2006 Dianne P. O'Leary 22

Range of fixed point

numbers

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 1 1 1 1 = -15

0 1 1 1 1 = 15

1999 - 2006 Dianne P. O'Leary 23

Range of fixed point

numbers

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 1 1 1 1 = -15

0 0 0 0 1 = 1

0 1 1 1 1 = 15

1999 - 2006 Dianne P. O'Leary 24

Overflow

If we try to add these numbers:

we get

We call this overflow: the answer is too large to store,
since it is outside the range of this number system.

0 1 1 1 1 = 15

= 8

= -7.

+ 0 1 0 0 0

1 0 1 1 1

7

1999 - 2006 Dianne P. O'Leary 25

Features of fixed point

arithmetic

Easy: always get an integer answer.

Either we get exactly the right answer for addition,
subtraction, or multiplication, or we can detect overflow.

The numbers that we can store are equally spaced.

Disadvantage: very limited range of numbers.

1999 - 2006 Dianne P. O'Leary 26

Floating point arithmetic

If we wanted to store 15 x 211 , we would need 16 bits:

Instead, let’s agree to code numbers as two fixed point
numbers:

z x 2 , with z = 15 saved as 01111

and p = 11 saved as 01011.

Now we can have fractions, too:

binary .101 = 1 x 2 + 0 x 2 + 1 x 2 .

p

-1 -2 -3

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1999 - 2006 Dianne P. O'Leary 27

Floating point arithmetic

Jargon: z is called the mantissa or significand.
p is called the exponent.

± z x 2p

To make the representation unique (since, for example,

2 x 21 = 4 x 20), we make the rule that 1 ≤ z < 2
(normalization).

We store d digits for the mantissa, and limit the range of the

exponent to m ≤ p ≤ M, for some integers m and M.

1999 - 2006 Dianne P. O'Leary 28

Floating point representation

Example: Suppose we have a machine with d = 5, m = -15,
M = 15.

15 x 210 = 11112 x 210 = 1.1112 x 213

mantissa z = +1.1110
exponent p = +1101

15 x 2-10 = 11112 x 2-10 = 1.1112 x 2-7

mantissa z = +1.1110

exponent p = -0111

8

1999 - 2006 Dianne P. O'Leary 29

Floating point standard

Up until the mid-1980s, each computer manufacturer had a
different choice for d, m, and M, and even a different way
to select answers to arithmetic problems.

A program written for one machine often would not compute
the same answers on other machines.

The situation improved somewhat with the introduction in 1987
of IEEE standard floating point arithmetic.

1999 - 2006 Dianne P. O'Leary 30

Floating point standard

On most machines today,

single precision: d = 24, m = -126, M = 127

double precision: d = 53, m = -1022, M = 1023.

(And the representation is 2’s complement, not
sign-magnitude, so that the number -|x| is stored as 2d - |x|,
where d is the number of bits allotted for its representation.)

1999 - 2006 Dianne P. O'Leary 31

Floating point addition

Machine arithmetic is more complicated for floating point.

Example: In fixed point, we added 3 + 10.
Here it is in floating point:

3 = 11 (binary) = 1.100 x 21 z = 1.100, p = 1
10 = 1010 (binary) = 1.010 x 23 z = 1.010, p = 11.

1. Shift the smaller number so that the exponents are equal
z = 0.0110 p = 11

2. Add the mantissas
z = 0.0110 + 1.010 = 1.1010, p = 11

3. Shift if necessary to normalize.
1999 - 2006 Dianne P. O'Leary 32

Roundoff in Floating point

addition

Sometimes we cannot store the exact answer.

Example: 1.1001 x 20 + 1.0001 x 2-1

1. Shift the smaller number so that the exponents are equal

z = 0.10001 p = 0
2. Add the mantissas

0.10001
+ 1.1001

= 10.00011, p = 0
3. Shift if necessary to normalize: 1.000011 x 21

But we can only store 1.0000 x 21! The error is called roundoff.

9

1999 - 2006 Dianne P. O'Leary 33

Underflow, overflow….

Convince yourself that roundoff cannot occur in fixed point.

Other floating point troubles:

Overflow: exponent grows too large.

Underflow: exponent grows too small.

1999 - 2006 Dianne P. O'Leary 34

Range of floating point

Example: Suppose that d = 5 and
exponents range between -15 and 15.

Smallest positive number: 1.0000 (binary) x 2-15

(since mantissa needs to be normalized)

Largest positive number: 1.1111 (binary) x 215

1999 - 2006 Dianne P. O'Leary 35

Rounding

IEEE standard arithmetic uses rounding.

Rounding: Store x as r, where r is the machine
number closest to x.

1999 - 2006 Dianne P. O'Leary 36

An important number:

machine epsilon

Machine epsilon is defined to be gap between 1 and the

next larger number that can be represented exactly
on the machine.

Example: Suppose that d = 5 and
exponents range between -15 and 15.

What is machine epsilon in this case?

Note: Machine epsilon depends on d and on whether
rounding or chopping is done, but does not depend on

m or M!

10

1999 - 2006 Dianne P. O'Leary 37

Features of floating point

arithmetic

• The numbers that we can store are not equally
spaced. (Try to draw them on a number line.)

• A wide range of variably-spaced numbers can be
represented exactly.

• For addition, subtraction, and multiplication, either
we get exactly the right answer or a rounded version
of it, or we can detect underflow or overflow.

1999 - 2006 Dianne P. O'Leary 38

How errors are propagated

1999 - 2006 Dianne P. O'Leary 39

Numerical Analysis vs.

Analysis

Mathematical analysis works with computations involving

real or complex numbers.

Computers do not work with these; for instance, they

do not have a representation for the numbers π or e or
even 0.1 .

Dealing with the finite approximations called floating point
numbers means that we need to understand error and
its propagation.

1999 - 2006 Dianne P. O'Leary 40

Absolute vs. relative errors

Absolute error in c as an approximation to x:

|x – c|

Relative error in c as an approximation to nonzero x:

|x – c|

|x|

11

1999 - 2006 Dianne P. O'Leary 41

Error Analysis

Errors can be magnified during computation.

Example: 2.003 x 100 (suppose ± .001 or .05% error)
- 2.000 x 100 (suppose ± .001 or .05% error)

Result of subtraction:

0.003 x 100

but true answer could be as small as 2.002 - 2.001 = 0.001,
or as large as 2.004 - 1.999 = 0.005!

1999 - 2006 Dianne P. O'Leary 42

Error Analysis

Errors can be magnified during computation.

Example: 2.003 x 100 (suppose ± .001 or .05% error)
- 2.000 x 100 (suppose ± .001 or .05% error)

Result of subtraction:

0.003 x 100 (± .002 or 200% error if true
answer is 0.001)

Catastrophic cancellation, or “loss of significance”

1999 - 2006 Dianne P. O'Leary 43

Error Analysis

We could generalize this example to prove a theorem:

When adding or subtracting, the bounds on
absolute errors add.

1999 - 2006 Dianne P. O'Leary 44

Error Analysis

What if we multiply or divide?

Suppose x and y are the true values, and X and Y are our

approximations to them. If

X = x (1 - r) and Y = y (1 - s)

then r is the relative error in x and s is the relative error
in y. You could show that

xy - XY
xy

≤ |r| + |s| + |rs|

12

1999 - 2006 Dianne P. O'Leary 45

Error Analysis

Therefore,

•When adding or subtracting, the bounds on absolute
errors add.

•When multiplying or dividing, the bounds on relative
errors add (approximately).

But we may also have additional error -- for example, from

chopping or rounding the answer.

Error bounds can be pessimistic.

1999 - 2006 Dianne P. O'Leary 46

Avoiding error build-up

Sometimes error can be avoided by clever tricks.

As an example, consider catastrophic cancellation that
can arise when solving for the roots of a quadratic
polynomial.

1999 - 2006 Dianne P. O'Leary 47

Cancellation example

Example: Find the roots of x2 - 56 x + 1 = 0.

Usual algorithm: x1 = 28 + sqrt(783) = 28 + 27.982 (± .0005)
= 55.982 (± .0005)

x2 = 28 - sqrt(783) = 28 - 27.982 (± .0005)

= 0.018 (± .0005)

The absolute error bounds are the same, but the relative error

bounds are 10-5 vs. .02!

1999 - 2006 Dianne P. O'Leary 48

Avoiding cancellation

Three tricks:

1) Use an alternate formula.
The product of the roots equals the low order term in the

polynomial. So

x2 = 1 / x1 = .0178629 (± 2 x 10-7)
by our error propagation

formula.

13

1999 - 2006 Dianne P. O'Leary 49

Avoiding cancellation

2) Rewrite the formula.

sqrt(x + e) - sqrt(x) = (sqrt(x+e) - sqrt(x)) (sqrt(x+e) + sqrt(x))

(sqrt(x+e) + sqrt(x))

= x + e - x = e
sqrt(x+e) + sqrt(x) sqrt(x+e) + sqrt(x)

so x2 = 28 - sqrt(783) = sqrt(784) - sqrt(783) .

1999 - 2006 Dianne P. O'Leary 50

Avoiding cancellation

3) Use Taylor series.

Let f(x) = sqrt(x). Then

f(x+a) - f(x) = f ′(x) a + 1/2 f ″(x) a2 + ...

1999 - 2006 Dianne P. O'Leary 51

How errors are measured

1999 - 2006 Dianne P. O'Leary 52

Error analysis

Error analysis determines the cumulative effects of error.

Two approaches:

• Forward error analysis
• Backward error analysis

14

1999 - 2006 Dianne P. O'Leary 53

1) Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems Space of answers

1999 - 2006 Dianne P. O'Leary 54

1) Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems Space of answers

*

*

True
problem

(known)

True

solution
(unknown)

1999 - 2006 Dianne P. O'Leary 55

1) Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems Space of answers

*

*

True
problem

(known)

True

solution
(unknown)#

Computed
solution

1999 - 2006 Dianne P. O'Leary 56

1) Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems Space of answers

*

*

True
problem

(known)

(known)

region
guaranteed
to contain
true soln.

#
Computed
solution

15

1999 - 2006 Dianne P. O'Leary 57

1) Forward error analysis

Space of answers

*

(known)

region
guaranteed
to contain
true soln.

#
Computed
solution

#

Report computed solution and location of region to the user.

1999 - 2006 Dianne P. O'Leary 58

2) Backward error analysis

Given an answer, determine how close the problem actually
solved is to the given problem.

Space of problems Space of answers

*

*

True
problem

(known)

True

solution
(unknown)#

Computed
solution

1999 - 2006 Dianne P. O'Leary 59

2) Backward error analysis

Given an answer, determine how close the problem actually
solved is to the given problem.

Space of problems Space of answers

*

*

True
problem

(known)

True

solution
(unknown)#

Computed
solution

#

Problem we
solved (unknown)

1999 - 2006 Dianne P. O'Leary 60

2) Backward error analysis

Report computed solution and location of region to the user.

Space of problems Space of answers

#

Computed
solution

Region containing
true problem and
solved problem

16

1999 - 2006 Dianne P. O'Leary 61

Arithmetic and Error

Summary:

-- how does error arise

-- how machines do arithmetic

-- fixed point arithmetic

-- floating point arithmetic

-- how errors are propagated in calculations.

-- how to measure error

