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Notes for Part 1 of

CMSC 460

Preliminaries:

• Mathematical modeling

• Computer arithmetic

• Errors

Dianne P. O’Leary
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Arithmetic and Error

What we need to know about error:

-- how does error arise

-- how machines do arithmetic

-- fixed point arithmetic
-- floating point arithmetic

-- how errors are propagated in calculations.

-- how to measure error
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How does error arise?
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How does error arise?

Example:  An engineer wants to study the stresses 

in a bridge.
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Measurement error

Step 1:  Gather lengths, angles, etc. for girders and wires.
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Modeling error

Step 2:  Approximate system by finite elements.
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Truncation error

Step 3:  Numerical analyst develops an algorithm: the stress

can be computed as the limit (as  n  becomes infinite) of some
function G(n).

Can’t take this limit on a computer, so decide to use G(150).

G(1),  G(2),   G(3),  G(4),  G(5),  ...
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Roundoff error

Step 4:  The algorithm is programmed and run on a computer.

We need π.  Approximate it by 3.1415926.

3 1 4 1 5 9 2 6 5 3 5 ...
.
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Sources of error

1.  Measurement error

2.  Modeling error

3.  Truncation error

4.  Roundoff error
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No mistakes!

Note:  No mistakes:  

• the engineer did not misread ruler, 

• the programmer did not make a typo in the definition of π, 

• and the computer worked flawlessly.

But the engineer will want to know what the final answer 
has to do with the stresses on the real bridge!
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What does a numerical 

analyst do? 

-- design algorithms and analyze them.

-- develop mathematical software.

-- answer questions about how accurate the final answer is.
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What does a computational 

scientist do?

-- works as part of an interdisciplinary team.

-- intelligently uses mathematical software to analyze 
mathematical models.
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How machines do 

arithmetic
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Machine Arithmetic: 

Fixed Point

How integers are stored in computers:

Each word (storage location) in a machine contains a fixed
number of digits.

Example:  A machine with a 6-digit word might represent
1985 as

0 0 1 9 8 5
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Fixed Point: 

Decimal vs. Binary

0 0 1 9 8 5

Most calculators use decimal (base 10) representation.

Each digit is an integer between  0  and 9.

The value of the number is

1 x 10  + 9 x 10  + 8 x 10  + 5 x 10   .
3              2            1             0
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Fixed Point: 

Decimal vs. Binary

0 1 0 1 1 0

Most computers use binary (base 2) representation.

Each digit is the integer  0  or 1.

If the number above is binary,  its value  is

1 x 2  + 0 x 2  + 1 x 2  + 1 x 2  + 0 x 2   .  (or 22 in base 10)
4           3           2           1           0      
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Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+
_______________________

Note the “carry” here!

0 + 0  =  0
0 + 1  =  1

1 + 0  =  1
1 + 1  =  10   (binary) = 102 = 2
1 + 1 + 1 = 11 (binary)=112 = 3
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Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+
_______________________

Note the “carry” here!

In decimal notation,   3

+10

=13
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Representing negative 

numbers

0 1 0 1 1

1 1 0 1 1

Computers represent negative numbers using 
“one’s complement”, “two’s complement”,
or sign-magnitude representation.

Sign magnitude is easiest, and enough for us: 
if the first bit is zero, then the number is positive.  

Otherwise, it is negative.

Denotes   +11.

Denotes    - 11.
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Range of fixed point                        

numbers                     

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 = 15
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Range of fixed point                        

numbers                     

Largest 5-digit (5 bit) binary number:

Smallest:

0 1 1 1 1 = 15
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Range of fixed point                        

numbers                     

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 1 1 1 1 = -15

0 1 1 1 1 = 15
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Range of fixed point                        

numbers                     

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 1 1 1 1 = -15

0 0 0 0 1 = 1

0 1 1 1 1 = 15
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Overflow                                   

If we try to add these numbers:

we get 

We call this overflow:  the answer is too large to store, 
since it is outside the range of this number system.

0 1 1 1 1 = 15

=   8

= -7.

+ 0 1 0 0 0

1 0 1 1 1
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Features of fixed point 

arithmetic

Easy: always get an integer answer.

Either we get exactly the right answer for addition, 
subtraction, or multiplication, or we can detect overflow.

The numbers that we can store are equally spaced.

Disadvantage: very limited range of numbers.
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Floating point  arithmetic                     

If we wanted to store 15 x 211 , we would need 16 bits:

Instead, let’s agree to code numbers as two fixed point 
numbers:

z  x  2     ,          with z = 15 saved as  01111

and  p = 11 saved as 01011.

Now we can have fractions, too:  

binary .101 = 1 x 2  +  0 x 2   + 1 x 2  .

p

-1          -2           -3

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
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Floating point  arithmetic                     

Jargon:   z  is called the mantissa or significand.   
p is called the exponent.

± z  x 2p

To make the representation unique (since, for example,

2 x 21 = 4 x 20 ), we make the rule that  1 ≤ z < 2
(normalization).

We store  d  digits for the mantissa, and limit the range of the

exponent to   m ≤ p ≤ M, for some integers  m  and M.
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Floating point representation                     

Example:  Suppose we have a machine with  d = 5,  m = -15,
M = 15.

15 x 210 = 11112 x 210 = 1.1112 x 213

mantissa    z = +1.1110
exponent    p = +1101

15 x 2-10 = 11112 x 2-10 = 1.1112 x 2-7

mantissa    z = +1.1110

exponent    p = -0111
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Floating point  standard                     

Up until the mid-1980s, each computer manufacturer had a 
different choice for  d,  m,  and M, and even a different way 
to select answers to arithmetic problems.

A program written for one machine often would not compute
the same answers on other machines.

The situation improved somewhat with the introduction in 1987
of  IEEE standard floating point arithmetic.
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Floating point  standard                     

On most machines today,

single precision:   d = 24,  m = -126,  M = 127

double precision:  d = 53, m = -1022, M = 1023.

(And the representation is 2’s complement, not 
sign-magnitude, so that the number -|x| is stored as 2d - |x|,
where d is the number of bits allotted for its representation.)
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Floating point  addition                     

Machine arithmetic is more complicated for floating point.

Example:  In fixed point, we added  3 + 10.  
Here it is in floating point:

3 =     11 (binary) = 1.100 x 21 z = 1.100,      p = 1
10 = 1010 (binary) = 1.010 x 23 z = 1.010,      p = 11.

1.  Shift the smaller number so that the exponents are equal
z = 0.0110    p = 11

2.  Add the mantissas
z = 0.0110 + 1.010 = 1.1010,   p = 11

3.  Shift if necessary to normalize.
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Roundoff in Floating point  

addition                     

Sometimes we cannot store the exact answer.

Example:  1.1001 x 20 + 1.0001 x 2-1

1.  Shift the smaller number so that the exponents are equal

z = 0.10001    p = 0
2.  Add the mantissas

0.10001 
+ 1.1001 

= 10.00011,   p = 0
3.  Shift if necessary to normalize:  1.000011 x 21

But we can only store  1.0000 x 21!  The error is called roundoff.
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Underflow, overflow….                     

Convince yourself that roundoff cannot occur in fixed point.

Other floating point troubles:

Overflow:  exponent grows too large.

Underflow:  exponent grows too small.
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Range of floating point                      

Example:  Suppose that  d = 5 and 
exponents range between -15 and 15.

Smallest positive number:   1.0000 (binary) x 2-15

(since mantissa needs to be normalized)

Largest positive number:     1.1111 (binary) x 215
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Rounding

IEEE standard arithmetic uses rounding.

Rounding:  Store  x  as  r,  where  r  is the machine 
number closest to  x.
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An important number:

machine epsilon                      

Machine epsilon is defined to be gap between 1 and the

next larger number that can be represented exactly
on the machine.

Example: Suppose that  d = 5 and 
exponents range between -15 and 15.

What is machine epsilon in this case?

Note: Machine epsilon depends on  d  and on whether 
rounding or chopping is done, but does not depend on  

m  or M!
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Features of floating point                         

arithmetic                

• The numbers that we can store are not equally 
spaced.  (Try to draw them on a number line.)

• A wide range of  variably-spaced numbers can be 
represented exactly.

• For addition, subtraction, and multiplication, either 
we get exactly the right answer or a rounded version 
of it, or we can detect underflow or overflow.
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How errors are propagated                     
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Numerical Analysis vs. 

Analysis

Mathematical analysis works with computations involving

real or complex numbers.

Computers do not work with these;  for instance, they 

do not have a representation for the numbers  π or  e  or 
even 0.1 .

Dealing with the finite approximations called floating point 
numbers means that we need to understand error and
its propagation.
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Absolute vs. relative errors

Absolute error in  c  as an approximation to  x:       

|x – c|

Relative error in  c  as an approximation to nonzero x:    

|x – c|                                                             

|x|
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Error Analysis

Errors can be magnified during computation.

Example:    2.003    x   100 (suppose  ± .001  or .05% error)
- 2.000    x   100 (suppose  ± .001  or .05% error)

Result of subtraction:

0.003   x   100

but true answer could be as small as  2.002 - 2.001 = 0.001,
or as large as   2.004 - 1.999 = 0.005!
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Error Analysis

Errors can be magnified during computation.

Example:    2.003    x   100 (suppose  ± .001  or .05% error)
- 2.000    x   100 (suppose  ± .001  or .05% error)

Result of subtraction:

0.003   x   100 (± .002  or 200% error if true 
answer is 0.001)

Catastrophic cancellation, or “loss of significance”
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Error Analysis

We could generalize this example to prove a theorem:

When adding or subtracting, the bounds on 
absolute errors add.
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Error Analysis

What if we multiply or divide?

Suppose  x  and  y are the true values,  and X and Y are our

approximations to them.   If

X  =  x (1 - r)    and      Y  =  y (1 - s)

then  r  is the relative error in  x  and  s  is the relative error
in  y.  You could show that

xy - XY     
xy

≤ |r|  +  |s|  +  |rs|
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Error Analysis

Therefore,

•When adding or subtracting, the bounds on absolute 
errors add.

•When multiplying or dividing, the bounds on relative 
errors add (approximately).

But we may also have additional error -- for example, from 

chopping or rounding the answer.

Error bounds can be pessimistic.
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Avoiding error build-up

Sometimes error can be avoided by clever tricks.

As an example, consider catastrophic cancellation that
can arise when solving for the roots of a quadratic
polynomial.
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Cancellation example

Example:     Find the roots of   x2 - 56 x + 1 = 0.

Usual algorithm:   x1 = 28 + sqrt(783) = 28 + 27.982   (± .0005)
= 55.982        (± .0005)

x2 = 28 - sqrt(783)  = 28 - 27.982    (± .0005)

= 0.018             (± .0005)

The absolute error bounds are the same, but the relative error 

bounds are 10-5 vs.  .02!

1999 - 2006 Dianne P. O'Leary 48

Avoiding cancellation

Three tricks:

1)  Use an alternate formula.
The product of the roots equals the low order term in the

polynomial.  So

x2 = 1 / x1 = .0178629    (± 2 x 10-7 )
by our error propagation

formula.



13

1999 - 2006 Dianne P. O'Leary 49

Avoiding cancellation

2) Rewrite the formula.

sqrt(x + e) - sqrt(x) = (sqrt(x+e) - sqrt(x)) (sqrt(x+e) + sqrt(x))

(sqrt(x+e) + sqrt(x))

=        x + e - x             =              e
sqrt(x+e) + sqrt(x)        sqrt(x+e) + sqrt(x)

so    x2 = 28 - sqrt(783) = sqrt(784) - sqrt(783)  .
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Avoiding cancellation

3) Use Taylor series.

Let   f(x) = sqrt(x).   Then 

f(x+a) - f(x) = f ′(x) a + 1/2  f ″(x) a2 + ...
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How errors are measured
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Error analysis

Error analysis determines the cumulative effects of error.

Two approaches:

• Forward error analysis
• Backward error analysis
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1)  Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems                   Space of answers
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1)  Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems                    Space of answers

*

*

True 
problem

(known)

True

solution
(unknown)
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1)  Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems                    Space of answers

*

*

True 
problem

(known)

True

solution
(unknown)#

Computed
solution
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1)  Forward error analysis

This is the way we have been discussing.

Find an estimate for the answer, and bounds on the error.

Space of problems                    Space of answers

*

*

True 
problem

(known)

(known)

region 
guaranteed
to contain
true soln.

#
Computed
solution
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1)  Forward error analysis

Space of answers

*

(known)

region 
guaranteed
to contain
true soln.

#
Computed
solution

#

Report computed solution and location of region to the user.
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2) Backward error analysis

Given an answer, determine how close the problem actually
solved is to the given problem.

Space of problems                    Space of answers

*

*

True 
problem

(known)

True

solution
(unknown)#

Computed
solution
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2) Backward error analysis

Given an answer, determine how close the problem actually 
solved is to the given problem.

Space of problems                    Space of answers

*

*

True 
problem

(known)

True

solution
(unknown)#

Computed
solution

#

Problem we
solved (unknown)
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2) Backward error analysis

Report computed solution and location of region to the user.

Space of problems                    Space of answers

#

Computed
solution

Region containing
true problem and
solved problem
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Arithmetic and Error

Summary:

-- how does error arise

-- how machines do arithmetic

-- fixed point arithmetic

-- floating point arithmetic

-- how errors are propagated in calculations.

-- how to measure error


