```
CMSC/AMSC 460 Fall 2007
Homework 5
Purpose: Practice in solving linear systems
    of equations and systems of ODEs.
We want to use ode45 to solve the differential equation:
        y'}=J\y-
Dianne O'Leary
Modified by Sima Taheri, 15 Oct. 2007
Parameters:
    [tout, yout,te,ye] = ode45(@hmwk5f, tspan, y0, options);
    hmwk5f: A function handle that evaluates the
                right side of the differential equations.
    tspam: A vector specifying the interval of integration, [0,10].
    y0: A vector of initial conditions, y0 = [1, 3,4]'.
    options: Structure of optional parameters that change
                the default integration properties.
    hmwk5e: A function handle for event.
Outputs:
    tout: Column vector of time points.
    ypout: Solution array. Each row in yout corresponds to the
                solution at a time returned in the corresponding row of tout
    te: The time when event, y3(t) = 1, occurs.
    ye: The solution at the time of the event
    Plot of the three components of y.
```

global maxcond
\% maxcond records the maximum condition number of the J
\% matrix over the course of the integration.
maxcond $=1$;
options=odeset('Events', @hmwk5e);
[tout, yout, te, ye] = ode45(@hmwk5f, [0 10], [1 3 4]',options);
plot (tout, yout (: , 1), 'r-', tout, yout (: , 2), 'b:', tout, yout (: , 3),'g-.')
grid on
xlabel('t')
ylabel('y')
legend('y(1)','y(2)','y(3)')
title('The solution to the differential equation in Hmwk 5')
disp(sprintf('The maximum condition number of J was \%f.',maxcond))
disp(sprintf('y(3)=1 at $\left.\left.t=\% f^{\prime}, t e\right)\right)$
$\% \%$

```
% Function that evaluates the right side of the differential equation.
function yprime = hmwk5f(t,y)
global maxcond
J = [1+t tr^2*y(2) t* y (3)
        t*y(1) 1+t t^2*y(3)
        t^2*y(1) t*y(2) 1+t];
yprime = J\y - y;
maxcond = max(maxcond,cond(J));
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Event function
function [value,isterminal,direction] = hmwk5e(t,y)
% value: The value of the function
% isterminal = 1, if the integration is to terminate
% at a zero of this event function and 0 otherwise.
% direction = O if all zeros are to be computed
% +1 if only the zeros where the event function increases,
% -1 if only the zeros where the event function decreases.
value = y(3)-1;
isterminal = 0;
direction = 0;
```


Output:

The maximum condition number of J was 491.116941.
$y(3)=1$ at $t=2.238698$

Plot:

