AMSC/CMSC 460 Quiz $1 \quad$, Fall 2007

For this page of the quiz, assume you have a base 2 computer that stores floating point numbers using a 5 bit normalized mantissa (x.xxxx), a 4 bit exponent, and a sign for each. Assume that all numbers are chopped rather than rounded.

1. (10) Consider the the following code fragment:
```
x = 1;
for j=1:2^ (20),
    x = x + delta;
end
```

For the computer specified above, what is the largest value of delta for which the final value of x is 1 ? Explain your reasoning.

Answer: Since this machine only stores 5 bits, the machine number just greater than 1 is $1.0001_{2}=1+1 / 16$.

In the first iteration of the loop, if delta $=1 / 16$, then x will change from 1 to 1.0001_{2}.

If delta is any number between 0 and $1 / 16$, then (because of chopping), x will not change its value.

So x is constant for any positive number less than $1 / 16$.
The largest machine-representable number less than $1 / 16$ is

$$
1.1111_{2} \times 2^{-5}=2^{-5}(1+1 / 2+1 / 4+1 / 8+1 / 16)=1 / 16-1 / 512 .
$$

2. Consider the equation $x^{2}-.81=0$.
(a) (5) What is the relative error in the values $x_{1}=.85, x_{2}=-.85$ as approximations to the two solutions to the equation?
Answer: The two relative errors are equal:

$$
\left|\frac{.9-.85}{.9}\right|=\frac{5}{90} .
$$

(b) (5) Give a backward error bound for $x_{1}=.91, x_{2}=-.91$ as approximations to the two solutions to the equation.
Answer: For backward error, we report a bound on the distance between the problem we solved and the problem we wanted to solve. We have solved the problem

$$
x^{2}-(.91)^{2}=0
$$

when we wanted to solve the problem

$$
x^{2}-.81=0
$$

so we have changed the constant term in the polynomial by

$$
.81-(.91)^{2}
$$

