1. (10) Compute the quadratic polynomial that interpolates the data

$$
(x, f(x))=(0,5), \quad(1,11), \quad(2,21)
$$

Use either the Lagrange form or the Newton form.

Answer:
The Lagrange form is

$$
p(x)=5 \frac{(x-1)(x-2)}{(0-1)(0-2)}+11 \frac{x(x-2)}{(1)(1-2)}+21 \frac{x(x-1)}{(2)(2-1)} .
$$

The divided differences are:
116
$21 \quad 10 \quad(6-10) /(0-2)=2$
so the Newton form is

$$
p(x)=5+6 x+2 x(x-1) .
$$

2. (10) Suppose we are interested in approximating a function $f(x)$ on the interval $[-1,1]$ using a polynomial p_{n-1} that interpolates f at the n points given by $-1,-1+h,-1+2 h, \ldots, 1$, where $h=2 /(n-1)$. Suppose you know that, on this interval, the maximum absolute value of all derivatives of f is 25 :

$$
\max _{x \in[-1,1]}\left|f^{(k)}(x)\right|<25, \quad k=0,1, \ldots
$$

Describe how you would determine how many interpolation points you should use to guarantee that

$$
\left|f(x)-p_{n-1}(x)\right| \leq 10^{-3}, \text { for all } x \in[-1,1]
$$

In particular, write a sequence of Matlab statements to verify that a particular value of n was large enough.
A useful formula:

$$
f(x)-p_{n-1}(x)=\frac{f^{(n)}(\xi)}{n!}\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

Answer: We need to verify that the absolute value of the right hand side of the useful formula is bounded by 10^{-3}. Since $\xi \in[-1,1]$, we have the bound of 25 for the derivative. We know $x_{i}=-1+i h$ where $h=2 /(n-1)$ is the distance between the n equally spaced points. We need a bound on $g(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$.
One bound is as follows. We saw graphically that the max occurs when x is in one of the end intervals. Let's put it in the first interval. Then

$$
\begin{aligned}
\left|x-x_{1}\right| & \leq h / 2 \\
\left|x-x_{2}\right| & \leq 2 h \\
\left|x-x_{3}\right| & \leq 3 h \\
& \cdots \\
\left|x-x_{n}\right| & \leq n h
\end{aligned}
$$

(The computation for x in the last interval is similar.) So for $x \in[-1,1]$,

$$
|g(x)| \leq \frac{n!}{2} h^{n}
$$

Therefore, our error bound of 10^{-3} is satisfied if

$$
\frac{25}{2}\left(\frac{2}{n-1}\right)^{n} \leq 10^{-3}
$$

We could solve this expression for n (by taking logs of both sides) or let Matlab evaluate it to see whether a given n is large enough.

