AMSC/CMSC 460 Quiz 3 , Fall 2007

1. (10) Use Simpson's rule to compute an approximation to

$$
\int_{0}^{1} e^{t} d t
$$

(If you can't remember Simpson, composite Trapezoid with 3 panels ($h=$ $1 / 3$) is worth 7 points.)

Answer:
Simpson:

$$
S=\frac{1}{6}\left[e^{0}+4 e^{1 / 2}+e^{1}\right]
$$

Trapezoidal rule:

$$
T=\frac{1}{6}\left[e^{0}+2 e^{1 / 3}+2 e^{2 / 3}+e^{1}\right]
$$

Numerically, $S=1.7, T=2.4$, and the true integral is 2.7 .
2. (10) Let

$$
I(f)=\int_{0}^{1} f(t) d t
$$

Suppose we approximate I by a Gauss-Lobatto rule of the form

$$
Q(f)=\omega_{1} f(0)+\omega_{2} f\left(t_{1}\right)+\omega_{3} f\left(t_{2}\right)+\omega_{4} f(1)
$$

Write down conditions to make this rule exact for polynomials of degree 5 or less.

Answer:

$$
\begin{array}{rlrlrl}
\int_{0}^{1} d x & =1=w_{1} & + & w_{2} & + & w_{3}+w_{4} \\
\int_{0}^{1} x d x & =1 / 2= & & t_{1} w_{2} & +t_{2} w_{3}+w_{4} \\
\int_{0}^{1} x^{2} d x & =1 / 3= & & t_{1}^{2} w_{2} & +t_{2}^{2} w_{3}+w_{4} \\
\int_{0}^{1} x^{3} d x & =1 / 4= & & t_{1}^{3} w_{2} & +t_{2}^{3} w_{3}+w_{4} \\
\int_{0}^{1} x^{4} d x & =1 / 5= & & t_{1}^{4} w_{2} & +t_{2}^{4} w_{3}+w_{4} \\
\int_{0}^{1} x^{5} d x & =1 / 6= & & t_{1}^{5} w_{2} & +t_{2}^{5} w_{3}+w_{4}
\end{array}
$$

