AMSC/CMSC $460 \quad$ Quiz $7 \quad$, Fall 2007

1. (10) Write Matlab code to use fzero to find an approximate solution to the problem

$$
F(x)=\int_{0}^{x} g(t) d t=5
$$

You may assume that there is a Matlab function g .m that evaluates $g(t)$, that $F(1)<5$ and that $F(2)>5$. Recall that fzero finds a point x so that $f(x)=0$. It takes two arguments: the first defines the function f and the second is a vector of length 2 where f evaluated at the first component differs in sign from f evaluated at the second.
Answer:

```
x = fzero(@F,[1,2]);
function y = F(x)
y = quad(@g,0,x) - 5;
```

2. (10) Apply one step of Newton's method to solve the nonlinear equation

$$
\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1 \\
\cos \left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

using a starting guess of $x_{1}=1 / 2, x_{2}=\pi / 4$. Your answer should be either two numbers (the values of x_{1} and x_{2} after the iteration), or computable formulas that Matlab could use to get these numbers.
(Recall that $\cos (\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2$.)
Answer: The Jacobian matrix is

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cc}
2 x_{1} & 2 x_{2} \\
0 & -\sin \left(x_{2}\right)
\end{array}\right] .
$$

Therefore, one step of Newton's method computes

$$
\mathbf{x} \leftarrow \mathbf{x}-\mathbf{J}(\mathbf{x}) \backslash\left[\begin{array}{c}
x_{1}^{2}+x_{2}^{2}-1 \\
\cos \left(x_{2}\right)
\end{array}\right]
$$

or

$$
\mathbf{x} \leftarrow\left[\begin{array}{l}
1 / 2 \\
\pi / 4
\end{array}\right]-\left[\begin{array}{cc}
1 & \pi / 2 \\
0 & -\sqrt{2} / 2
\end{array}\right] \backslash\left[\begin{array}{c}
1 / 4+(\pi / 2)^{2}-1 \\
\sqrt{2} / 2
\end{array}\right] .
$$

