
Image Deblurring
Spring 2012

Notes on Chapter 1
Dianne P. O’Leary

c©2012

1

Overview of Course

• Textbook: Deblurring Images: Matrices, Spectra, and Filtering, SIAM
Press, 2006.

• Organization:

– Lectures: Please ask questions!

– Challenges: Work to be done alone or in small group collaborations,
as you prefer. Some in class, some on your own.

– Course syllabus and schedule.

2

The plan for this lecture:

• What is image deblurring?

• How do images become arrays of numbers?

• How do we model the blurring process?

• What makes blurring hard?

• How do we model more general blurring?

Reference: Chapter 1 of Deblurring Images.

3

What is image deblurring?

4

What is image deblurring?

When we use a camera, we want the recorded image to be a faithful
representation of the scene that we see – but every image is more or less
blurry.

Thus, image deblurring, the process of processing the image to make it a
better representation of the scene, is fundamental in making pictures sharp
and useful.

5

Pixels

A digital image is composed of picture elements called pixels.

Each pixel is assigned an intensity, meant to characterize the color of a
small rectangular segment of the scene. The intensity can be an integer or
a vector of integers. (More on this later.)

A small image typically has around 2562 = 65,536 pixels while a high-
resolution image often has 5 to 10 million pixels.

6

Why are images blurry?

Some blurring always arises in the recording of a digital image, because it is
unavoidable that scene information “spills over” to neighboring pixels.

• The optical system in a camera lens may be out of focus, so that the
incoming light is smeared out.

• In astronomical imaging the incoming light in the telescope is slightly
bent by turbulence in the atmosphere.

Lenses are not perfect, so blurring always occurs, but in most images we
ignore it.

7

How can blur be reduced or eliminated?

In image deblurring, we seek to recover the original, sharp image by using a
mathematical model of the blurring process.

Key issue: some information on the lost details is indeed present in the
blurred image – but this information is “hidden” and can only be recovered
if we know the details of the blurring process.

Unfortunately there is no hope that we can recover the original image
exactly: there is error in our data.

• defects in the recording process: e.g., slight variations in the film or
slight differences in the digital hardware that records each pixel.

• approximation errors due to the resolution level of the pixels.

• truncation errors, due to recording an integer approximation to a
continuous quantity.

8

Our challenge:

Devise efficient and reliable algorithms for recovering as much information
as possible from the given (imperfect) data.

9

Why is image deblurring important?

• Yes, it is a useful tool for our vacation pictures.

• More importantly, it enables us to extract maximal information in cases
where it is expensive or even impossible to obtain an image without blur:

– astronomical images

– medical images

• It has important applications in our economy: for example, barcode
readers used in stores and by shipping companies must be able to
compensate for imperfections in the scanner optics.

10

How do images become arrays of numbers?

We need to represent images as arrays of numbers in order to use
mathematical techniques for deblurring.

11

Grayscale Images

Grayscale images are typically recorded by CCDs (charge-coupled devices),
arrays of tiny detectors, arranged in a rectangular grid, able to record the
amount, or intensity, of the light that hits each detector.

Thus, we can think of a grayscale digital image as a rectangular m× n
array, whose entries represent light intensities captured by the detectors.

Consider the following 9× 16 array:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 8 0 0 0 0 4 4 0 0 0 0 0 0 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 0 0 0 0 4 4 0 3 3 3 3 3 0
0 8 8 8 8 8 0 4 4 0 3 3 3 3 3 0
0 8 8 8 8 8 0 4 4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If we enter this into a Matlab variable X and display the array with the
commands imagesc(X), axis image, colormap(gray), then we
obtain

12

Notice:

• 8 is displayed as white

• 0 is displayed as black.

• Values in between are shades of gray.

13

Color images

Color images are stored as three components, which represent their
intensities on the red, green, and blue scales.

• (1, 0, 0) is red.

• (0, 0, 1) is blue.

• (1, 1, 0) is yellow.

Other colors can be obtained with different choices of intensities.

Hence, we need three arrays (of the same size) to represent a color image.

14

An example of a color image

Let X be a multidimensional Matlab array of dimensions 9× 16× 3
defined as

X(:, :, 1) =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

X(:, :, 2) =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

X(:, :, 3) =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

The command imagesc(X), gives the picture

15

• We will focus mostly on grayscale images.

• However, the techniques carry over to color images, and we will discuss
them later in the course.

16

How do we model the blurring process?

We must devise a mathematical model that relates the given blurred image
to the unknown true image.

To fix notation:

• X ∈ Rm×n represents the desired sharp image,

• B ∈ Rm×n denotes the recorded blurred image.

17

An important special case

Assume that the blurring of the columns in the image is independent of the
blurring of the rows.

When this is the case, then there exist two matrices Ac ∈ Rm×m and
Ar ∈ Rn×n, such that

Ac XAr
T = B.

• Left multiplication with the matrix Ac applies the same vertical blurring
operation to all the n columns xj of X, because

Ac X = Ac

[
x1 x2 · · · xn

]
=

[
Acx1 Acx2 · · · Acxn

]
.

• Right multiplication with Ar
T applies the same horizontal blurring to all

the m rows of X.

• Since matrix multiplication is associative, i.e.,
(Ac X) Ar

T = Ac (XAr
T), it does not matter in which order we perform

the two blurring operations.

18

What makes blurring hard?

19

A First Attempt at Deblurring

This looks simple! If
Ac XAr

T = B,

then
X = Ac

−1BAr
−T

(Ar
−T = (Ar

T)−1 = (Ar
−1)T .)

So we have an algorithm for deblurring.

OK. I guess we’re finished, and can spend the rest of the course playing
Angry Birds.

20

The results of our algorithm

The “näıve” reconstruction of the pumpkin image, obtained by computing
X = Ac

−1BAr
−T via Gaussian elimination on both Ac and Ar. The image

X is completely dominated by the influence of the noise.

21

What went wrong?

To understand why this näıve approach fails, we must take a closer look.

Notation:

• exact (unknown) image = Xexact

• noise-free blurred version of the image = Bexact = Ac Xexact Ar
T .

Unfortunately, we don’t know Bexact!

The blurred image is collected by a mechanical device, so inevitably small
random errors (noise) will be present in the recorded data.

22

Let us assume that this noise is additive and that it is statistically
uncorrelated with the image.

Then the recorded blurred image B is really given by

B = Bexact + E = Ac Xexact Ar
T + E,

where the matrix E (of the same dimensions as B) represents the noise in
the recorded image.

23

Why did the näıve reconstruction fail?

The näıve reconstruction computed

Xnaive = Ac
−1BAr

−T = Ac
−1Bexact Ar

−T + Ac
−1EAr

−T

and therefore
Xnaive = Xexact + Ac

−1EAr
−T ,

where the term Ac
−1EAr

−T , which we can informally call inverted noise,
represents the contribution to the reconstruction from the additive noise.

This inverted noise will dominate the solution if Ac
−1EAr

−T has larger
elements than Xexact.

Unfortunately, in many situations, the inverted noise indeed dominates.

Apparently, image deblurring is not as simple as it first appears, which will
limit our time playing Angry Birds.

We will spend most of the course developing deblurring methods that are
able to correctly handle the inverted noise.

24

How do we model more general blurring?

25

Linear models

We assume throughout this course that the blurring, i.e., the operation of
going from the sharp image to the blurred image, is linear.

• This assumption is (usually) a good approximation to reality.

• This assumption makes our life much easier!

• This assumption is almost always made in the literature and in practice.

This one assumption opens a wide choice of methods!

26

A general linear model

Our first model
Ac XAr

T = B,

requires that the same horizontal blur and the same vertical blur be applied
to every pixel.

To form a more general model, we must rearrange the elements of the
images X and B into column vectors by stacking the columns of these
images into two long vectors x and b, both of length N = m n. The
notation for this operator is vec:

x = vec(X) =

 x1
...
xn

 ∈ RN , b = vec(B) =

 b1
...
bn

 ∈ RN .

27

Since the blurring is assumed to be a linear operation, there must exist a
large matrix A ∈ RN×N such that x and b are related by the linear model

Ax = b

and this is our fundamental image blurring model.

For now, assume that A is known; we’ll give more details on this later.

28

What does linearity mean?

If B1 and B2 are the blurred images of the exact images X1 and X2, then

B = αB1 + β B2

is the image of
X = αX1 + β X2

.

When this is the case, then there exists a large matrix A such that
b = vec(B) and x = vec(X) are related by the equation

Ax = b.

The matrix A represents the blurring that is taking place in the process of
going from the exact to the blurred image.

29

How can we solve the linear model?

Ax = b.

means
x = A−1b,

but this is just the näıve approach again, and we can expect failure due to
the effects of inverted noise.

Let’s develop the machinery to understand why this fails and to cure the
failure.

30

Understanding why the näıve approach fails

Again let Xexact and Bexact be, respectively, the exact image and the
noise-free blurred image, and define

xexact = vec(Xexact), bexact = vec(Bexact) = Axexact.

Then the noisy recorded image B is

b = bexact + e,

where the vector e = vec(E) represents the image noise.

Consequently (again ignoring rounding errors) the näıve reconstruction is
given by

xnaive = A−1b = A−1bexact + A−1e = xexact + A−1e,

where the term A−1e is the inverted noise.

31

Again, the important observation is that the deblurred image consists of
two components:

• The first component is the exact image.

• The second component is the inverted noise.

If the deblurred image looks unacceptable, it is because the inverted noise
term contaminates the reconstructed image.

32

Designing an improved method

Important tool for insight: the singular value decomposition (SVD) of A.

The SVD of a square matrix A ∈ RN×N is essentially unique, and is
defined as the decomposition

A = UΣVT ,

where

• U and V are orthogonal matrices, satisfying UTU = IN and VTV = IN .
The columns ui of U are called the left singular vectors, while the
columns vi of V are the right singular vectors.

•Σ = diag(σi) is a diagonal matrix whose elements σi appear in
non-increasing order,

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0.

The quantities σi are called the singular values, and the rank of A is
equal to the number of positive singular values.

33

Important property: if i 6= j,

uT
i uj = 0

and
vT

i vj = 0.

34

A−1 using the SVD

Assume for the moment that all singular values are strictly positive.

First representation:

A = UΣVT

A−1 = VΣ−1UT

Given the SVD, we can easily multiply a vector by A−1 since Σ is a
diagonal matrix, so Σ−1 is also diagonal, with entries 1/σi for
i = 1, . . . , N .

35

Second representation:

A = UΣVT

=
[
u1 · · · uN

] σ1
. . .

σN

 vT
1
...

vT
N

= u1σ1v

T
1 + · · · + uNσNvT

N

=

N∑
i=1

σiui v
T
i .

Similarly,

A−1 =

N∑
i=1

1

σi
vi u

T
i .

36

Finally: how the inverted noise gets magnified

Using our second representation,

A−1 =

N∑
i=1

1

σi
vi u

T
i .

the solution to our problem is

A−1b =

N∑
i=1

1

σi
vi u

T
i b .

and the inverted noise contribution to the solution is

A−1e = VΣ−1UTe =

n∑
i=1

uT
i e

σi
vi .

37

Why does the error term dominate?

A−1e = VΣ−1UTe =

n∑
i=1

uT
i e

σi
vi .

• The error components |uT
i e| are small and typically of roughly the same

order of magnitude for all i.

• The singular values decay to a value very close to zero.

• When we divide by a small singular value such as σN , we greatly
magnify the corresponding error component, uT

Ne, which in turn
contributes a large multiple of the high frequency information contained
in vN to the computed solution.

• The singular vectors corresponding to the smaller singular values
typically represent higher frequency information. That is, as i increases,
the vectors ui and vi tend to have more sign changes.

38

v
1

v
3

v
4

v
15

A few of the singular vectors for the blur of the pumpkin image. The
“images” shown in this figure were obtained by reshaping the n2 × 1
singular vectors vi into n× n arrays.

39

Interpreting the coefficients of the solution

A−1b = VΣ−1UTb =

n∑
i=1

uT
i b

σi
vi .

The quantities uT
i b/σi are the expansion coefficients for the basis vectors

vi.

• When these quantities are small in magnitude, the solution has very
little contribution from vi

• But when σi is very small, these quantities are large.

And when this happens in the presence of error, the näıve reconstruction
appears as a random image dominated by high frequencies.

40

An improved solution through filtering

Because of the contamination due to the error components, we might be
better off leaving the high frequency components out altogether.

We can replace

A−1b =

N∑
i=1

uT
i b

σi
vi

by
k∑

i=1

uT
i b

σi
vi .

for some choice of k < N .

41

The reconstruction obtained for the blur of pumpkins by using k = 800
(instead of the full k = N = 169, 744)

Notice that the computed reconstruction is noticably better than the näıve
solution shown before.

42

Next question:

• Will a different value for k produce a better reconstruction?

• If so, how can we choose a good value?

Important questions, but first, in the next lecture, we will discuss
manipulating images in Matlab.

43

Summary

• A digital image is a 2- or 3-dimensional array of numbers representing
intensities on a grayscale or color scale.

• We model the blurring of images as a linear process characterized by a
blurring matrix A and an observed image B, which, in vector form, is b.

• The reason A−1b cannot be used to deblur images is the amplification
of high-frequency components of the noise in the data, caused by the
inversion of very small singular values of A. Practical methods for image
deblurring need to avoid this pitfall.

44

