Notes for Chapter 1 of

Scientific Computing with Case Studies

Dianne P. O'Leary SIAM Press, 2008

- Mathematical modeling
- Computer arithmetic
- Errors

© 1999 - 2008

Dianne P. O'Leary

4

Arithmetic and Error

What we need to know about error:

- -- how does error arise
- -- how machines do arithmetic
 - -- fixed point arithmetic
 - -- floating point arithmetic
- -- how errors are propagated in calculations.
- -- how to measure error

© 1999 - 2008

Dianne P. O'Learv

How does error arise?

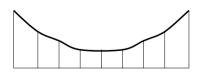
© 1999-2008

Dianne P. O'Leary

3

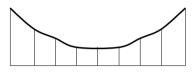
How does error arise?

Example: An engineer wants to study the stresses in a bridge.



© 1999 - 2008

Step 1: Gather lengths, angles, etc. for girders and wires.



© 1999 - 2008

Dianne P. O'Learv

Truncation error

Step 3: Numerical analyst develops an algorithm: the stress can be computed as the **limit** (as n becomes infinite) of some function G(n).

Can't take this limit on a computer, so decide to use G(150).

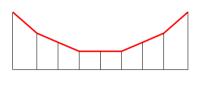
G(1), G(2), G(3), G(4), G(5), ...

© 1999 - 2008

Dianne P. O'Leary

Modeling error

Step 2: Approximate system by finite elements.



© 1999 - 2008

Dianne P. O'Leary

Roundoff error

Step 4: The algorithm is programmed and run on a computer. We need π . Approximate it by 3.1415926.

3 1 4 1 5 9 2 6 5 3 5 ...

© 1999 - 2008

Sources of error

- 1. Measurement error
- 2. Modeling error
- 3. Truncation error
- 4. Rounding error

© 1999 - 2008

Dianne P. O'Leary

O'l conv

11

What does a numerical analyst do?

- -- design algorithms and analyze them.
- -- develop mathematical software.
- -- answer questions about how accurate the final answer is.

© 1999 - 2008

Dianne P. O'Leary

No mistakes!

Note: No mistakes:

- the engineer did not misread ruler,
- the model was good,
- the programmer did not make a typo in the definition of π ,
- and the computer worked flawlessly.

But the engineer will want to know what the final answer has to do with the stresses on the real bridge!

© 1999 - 2008

Dianne P. O'Leary

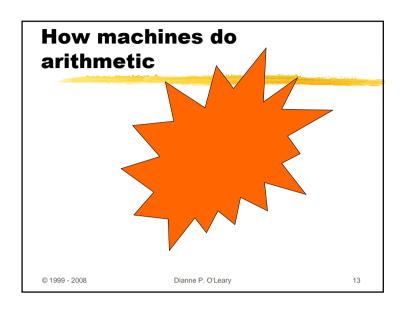
10

12

What does a computational scientist do?

- -- works as part of an interdisciplinary team.
- -- intelligently uses mathematical software to analyze mathematical models.

© 1999 - 2008



Fixed Point: Decimal vs. Binary

0 0 1 9 8 5

Most calculators use **decimal (base 10)** representation.

Each digit is an integer between 0 and 9.

The value of the number is

$$1 \times 10^{3} + 9 \times 10^{2} + 8 \times 10^{1} + 5 \times 10^{0}$$
.

© 1999 - 2008

Dianne P. O'Leary

15

Fixed Point

How integers are stored in computers:

Machine Arithmetic:

Each **word** (storage location) in a machine contains a fixed number of digits.

Example: A machine with a 6-digit word might represent 1985 as

0 0 1 9 8 5

© 1999 - 2008

Dianne P. O'Leary

Fixed Point: Decimal vs. Binary

0 1 0 1 1 0

Most computers use binary (base 2) representation.

Each digit is the integer 0 or 1.

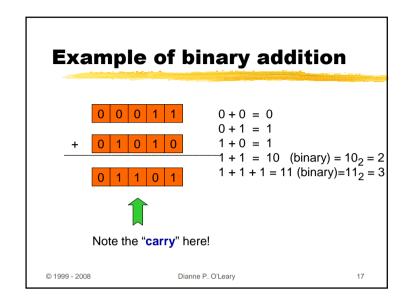
If the number above is binary, its value is

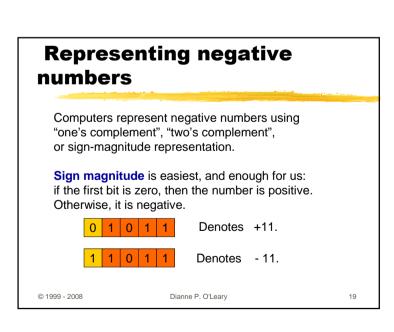
 $1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$. (or 22 in base 10)

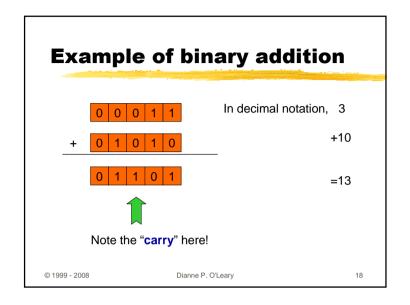
© 1999 - 2008

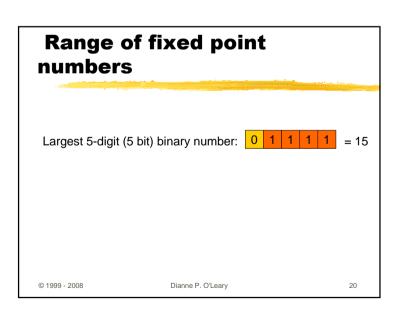
Dianne P. O'Leary

16









Range of fixed point numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 = 15

Smallest:

© 1999 - 2008

Dianne P. O'Leary

21

Range of fixed point numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1

0 1 1 1 1 = 1

22

24

Smallest: 1 1 1 1 1 =

Smallest positive:

© 1999 - 2008

Dianne P. O'Leary

Range of fixed point numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 =

Smallest: 1 1 1 1 1 = -15

Smallest positive: 0 0 0 0 1 = 1

© 1999 - 2008 Dianne P. O'Leary 23

Overflow

If we try to add these numbers:

we get

We call this overflow: the answer is too large to store, since it is outside the range of this number system.

© 1999 - 2008

Features of fixed point arithmetic

Easy: always get an integer answer.

Either we get exactly the right answer for addition, subtraction, or multiplication, or we can detect overflow.

The numbers that we can store are equally spaced.

Disadvantage: **very** limited range of numbers.

© 1999 - 2008

Dianne P. O'Leary

25

Floating point arithmetic

Jargon: z is called the **mantissa** or **significand**. p is called the **exponent.**

To make the representation unique (since, for example,

 $2 \times 2^{1} = 4 \times 2^{0}$), we **normalize** to make $1 \le z < 2$.

We store d digits for the mantissa, and limit the range of the exponent to $m \le p \le M$, for some integers m and M.

© 1999 - 2008

Dianne P. O'Leary

27

Floating point arithmetic

If we wanted to store 15 x 2¹¹, we would need 16 bits:

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Instead, let's agree to code numbers as **two** fixed point binary numbers:

$$z \times 2^{p}$$
, with $z = 15$ saved as 01111 and $p = 11$ saved as 01011.

Now we can have fractions, too:

binary
$$0.101 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
.

© 1999 - 2008

Dianne P. O'Leary

26

Floating point representation

Example: Suppose we have a machine with d = 5, m = -15, M = 15.

$$15 \times 2^{10} = 1111_2 \times 2^{10} = 1.111_2 \times 2^{13}$$

mantissa
$$z = +1.1110$$

exponent $p = +1101$

$$15 \times 2^{-10} = 1111_2 \times 2^{-10} = 1.111_2 \times 2^{-7}$$

mantissa z = +1.1110exponent p = -0111

© 1999 - 2008

Dianne P. O'Leary

Floating point standard

Up until the mid-1980s, each computer manufacturer had a different choice for d, m, and M, and even a different way to select answers to arithmetic problems.

A program written for one machine often would not compute the same answers on other machines.

The situation improved somewhat with the introduction in 1987 of **IEEE standard** floating point arithmetic.

© 1999 - 2008

Dianne P. O'Leary

20

31

Floating point addition

Machine arithmetic is more complicated for floating point.

Example: In fixed point, we added 3 + 10. Here it is in floating point:

$$3 = 11 \text{ (binary)} = 1.100 \text{ x } 2^1 \text{ } z = 1.100, \quad p = 1$$

 $10 = 1010 \text{ (binary)} = 1.010 \text{ x } 2^3 \text{ } z = 1.010, \quad p = 11.$

- 1. Shift the smaller number so that the exponents are equal z = 0.0110 p = 11
- 2. Add the mantissas

$$z = 0.0110 + 1.010 = 1.1010$$
, $p = 11$

3. Shift if necessary to normalize.

© 1999 - 2008

Dianne P. O'Leary

Floating point standard

On most machines today,

single precision: d = 24, m = -126, M = 127

double precision: d = 53, m = -1022, M = 1023.

(And the representation is 2's complement, not sign-magnitude, so that the number -|x| is stored as $2^d - |x|$.)

© 1999 - 2008

Dianne P. O'Leary

Roundoff in Floating point addition

Sometimes we cannot store the exact answer.

Example: $1.1001 \times 2^{0} + 1.0001 \times 2^{-1}$

1. Shift the smaller number so that the exponents are equal

$$z = 0.10001$$
 $p = 0$

2. Add the mantissas

0.10001

+ 1.1001

= 10.00011, p = 0

3. Shift if necessary to normalize: 1.000011 x 2¹

But we can only store 1.0000×2^{1} ! The error is called **roundoff.**

© 1999 - 2008

Dianne P. O'Leary

32

Underflow, overflow....

Convince yourself that roundoff cannot occur in fixed point.

Other floating point troubles:

Overflow: exponent grows too large.

Underflow: exponent grows too small.

© 1999 - 2008

Dianne P. O'Leary

33

35

Rounding

IEEE standard arithmetic uses rounding.

Rounding: Store x as r, where r is the machine number closest to x.

© 1999 - 2008

Dianne P. O'Leary

Range of floating point

Example: Suppose that d = 5 and

exponents range between -15 and 15.

Smallest positive number: 1.0000 (binary) x 2⁻¹⁵

(since mantissa needs to be normalized)

Largest positive number: 1.1111 (binary) x 2¹⁵

© 1999 - 2008

Dianne P. O'Leary

An important number: machine epsilon

Machine epsilon is defined to be gap between 1 and the next larger number that can be represented exactly on the machine.

Example: Suppose that d = 5 and exponents range between -15 and 15.

What is machine epsilon in this case?

Note: Machine epsilon depends on d and on whether rounding or chopping is done, but does not depend on m or M!

© 1999 - 2008

Dianne P. O'Leary

36

Features of floating point arithmetic

- The numbers that we can store are **not** equally spaced. (Try to draw them on a number line.)
- A wide range of variably-spaced numbers can be represented exactly.
- For addition, subtraction, and multiplication, either we get exactly the right answer or a rounded version of it, or we can detect underflow or overflow.

© 1999 - 2008

Dianne P. O'Leary

37

39

Numerical Analysis vs. Analysis

Mathematical analysis works with computations involving **real** or **complex** numbers.

Computers do not work with these; for instance, they do not have a representation for the numbers $\,\pi\,$ or $\,e\,$ or even 0.1 .

Dealing with the finite approximations called **floating point numbers** means that we need to understand **error and its propagation.**

© 1999 - 2008

Dianne P. O'Leary

How errors are propagated

© 1999-2008

Dianne P. O'Leary

38

Absolute vs. relative errors

Absolute error in c as an approximation to x:

$$|x - c|$$

Relative error in c as an approximation to nonzero x:

$$\frac{|x-c|}{|x|}$$

© 1999 - 2008

Dianne P. O'Leary

Error Analysis

Errors can be magnified during computation.

Example: 2.003×10^{0} (suppose $\pm .001$ or .05% error) -2.000×10^{0} (suppose $\pm .001$ or .05% error)

Result of subtraction:

 0.003×10^{0}

but true answer could be as small as 2.002 - 2.001 = 0.001, or as large as 2.004 - 1.999 = 0.005!

© 1999 - 2008

Dianne P. O'Leary

43

Error Analysis

We could generalize this example to prove a theorem:

When adding or subtracting, the bounds on absolute errors add.

© 1999 - 2008

Dianne P. O'Leary

Error Analysis

Errors can be magnified during computation.

Example: 2.003×10^{0} (suppose $\pm .001$ or .05% error) - 2.000×10^{0} (suppose $\pm .001$ or .05% error)

Result of subtraction:

0.003 x 10^0 (± .002 or 200% error if true answer is 0.001)

42

44

Catastrophic cancellation, or "loss of significance"

© 1999 - 2008

Dianne P. O'Leary

Error Analysis

What if we multiply or divide?

Suppose x and y are the true values, and X and Y are our approximations to them. If

$$X = x (1 - r)$$
 and $Y = y (1 - s)$

then $\, r \,$ is the relative error in $\, x \,$ and $\, s \,$ is the relative error in $\, y . \,$ You could show that

$$\left| \frac{xy - XY}{xv} \right| \le |r| + |s| + |rs|$$

© 1999 - 2008

Error Analysis

Therefore,

- •When adding or subtracting, the bounds on absolute errors add.
- •When multiplying or dividing, the bounds on relative errors add (approximately).

But we may also have additional error -- for example, from chopping or rounding the answer.

Error bounds are useful, but they can be pessimistic. Backward error analysis, discussed later, is an alternative.

© 1999 - 2008

Dianne P. O'Leary

45

Avoiding error build-up

Sometimes error can be avoided by clever tricks.

As an example, consider catastrophic cancellation that can arise when solving for the roots of a quadratic polynomial.

© 1999 - 2008

Dianne P. O'Leary

46

48

Cancellation example

Example: Find the roots of $x^2 - 56x + 1 = 0$.

Usual algorithm: $x_1 = 28 + \text{sqrt}(783) = 28 + 27.982 \ (\pm .0005)$ = 55.982 \ (\pm .0005)

> $x_2 = 28 - \text{sqrt}(783) = 28 - 27.982 \quad (\pm .0005)$ = 0.018 \quad (\pm .0005)

The **absolute** error bounds are the same, but the **relative** error bounds are 10^{-5} vs. .02!

© 1999 - 2008

Dianne P. O'Leary

47

Avoiding cancellation

Three tricks:

1) Use an alternate formula.

The product of the roots equals the low order term in the polynomial. So

$$x_2 = 1 / x_1 = .0178629$$
 (± 2 x 10⁻⁷)
by our error propagation formula.

© 1999 - 2008

Dianne P. O'Leary

Avoiding cancellation

2) Rewrite the formula.

$$sqrt(x + e) - sqrt(x) = (sqrt(x+e) - sqrt(x)) (sqrt(x+e) + sqrt(x))$$

$$(sqrt(x+e) + sqrt(x))$$

$$= x + e - x = e$$

$$sqrt(x+e) + sqrt(x) = sqrt(x+e) + sqrt(x)$$

so
$$x_2 = 28 - \text{sqrt}(783) = \text{sqrt}(784) - \text{sqrt}(783)$$
.

© 1999 - 2008

Dianne P. O'Leary

Avoiding cancellation

3) Use Taylor series.

Let
$$f(x) = sqrt(x)$$
. Then

$$f(x+a) - f(x) = f'(x) a + 1/2 f''(x) a^2 + ...$$

© 1999 - 2008

Dianne P. O'Leary

50

52

How errors are measured

© 1999-2008

Dianne P. O'Leary

51

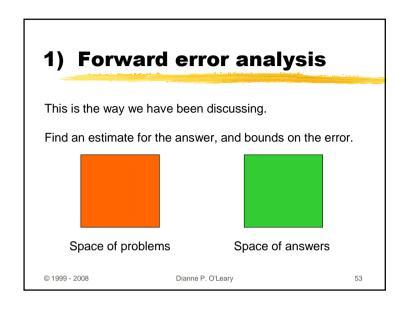
Error analysis

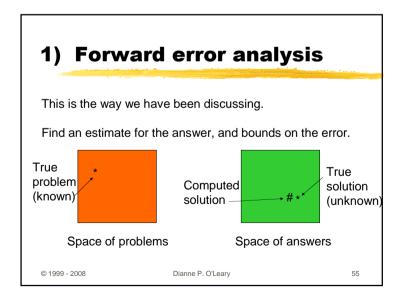
Error analysis determines the cumulative effects of error.

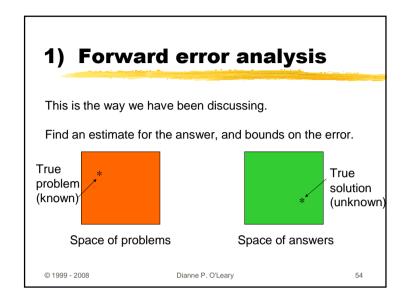
Two approaches:

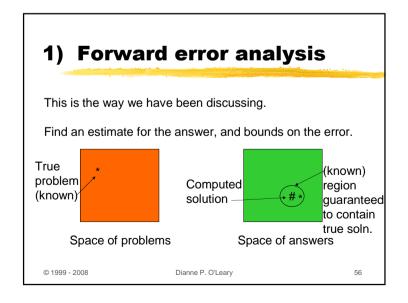
- Forward error analysis
- Backward error analysis

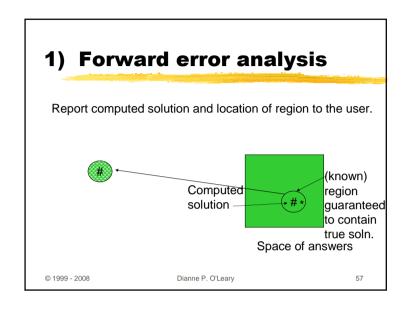
© 1999 - 2008

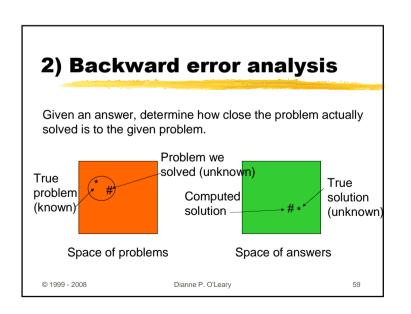


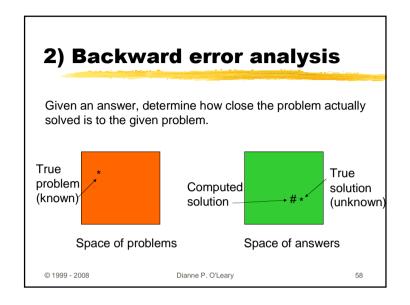


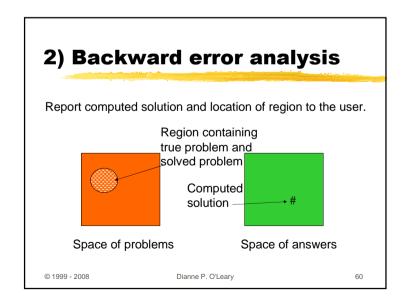












Arithmetic and Error

Summary:

- -- how does error arise
- -- how machines do arithmetic
 - -- fixed point arithmetic
 - -- floating point arithmetic
- -- how errors are propagated in calculations.
- -- how to measure error

© 1999 - 2008

Dianne P. O'Leary