1. (10) Suppose we have a matrix A of dimension $n \times n$ of rank n-1. Give two numerically stable ways to find a vector z so that Az = 0.

Answer: Some possibilities:

- Any right eigenvector u of A corresponding to a zero eigenvalue satisfies Au = 0u = 0. With roundoff, the computed eigenvalue will not be exactly zero, so we can choose the eigenvector of A corresponding to the smallest magnitude eigenvalue.
- Similarly, if v is a right singular vector of A corresponding to a zero singular value, then Av = 0, so choose a singular vector corresponding to the smallest singular value.
- Let e_n be the vector with a 1 in position n and zeros elsewhere. If we perform a rank-revealing QR decomposition of A^T , so that $A^TP = QR$, and let q_n be the last column of Q, then $q_n^TA^TP = q_n^TQR = e_n^TR = r_{nn}e_n^T = 0$. Multiplying through by P^{-1} we see that $Aq_n = 0$, so choose $z = q_n$.
- 2. (10) Recall the Gram-Schmidt algorithm:

Set
$$r_{11} = ||a_1||$$
.
Set $q_1 = a_1/r_{11}$.
for $k = 1, \dots, n-1$,

Set
$$q_{k+1} = a_{k+1}$$
.
for $i = 1, ..., k$,

$$r_{i,k+1} = q_{k+1}^T q_i$$

$$q_{k+1} = q_{k+1} - r_{i,k+1} q_i$$
end for

$$r_{k+1,k+1} = ||q_{k+1}||$$

 $q_{k+1} = q_{k+1}/r_{k+1,k+1}$

end for

Show that $q_i^T q_k = 0$ for i < k.

Answer: A proof by finite induction. Note that after we finish the iteration k = 1, we have $q_{k+1} = q_{k+1} - r_{1,k+1}q_1$, so

$$q_1^T q_{k+1} = q_1^T q_{k+1} - r_{1,k+1} q_1^T q_1 = 0$$

by the definition of $r_{1,k+1}$ and the fact that $q_1^T q_1 = 1$.

Assume that after we finish iteration i=j-1, for a given value of k, we have $q_{\ell}^T q_{k+1} = 0$ for $\ell \leq j-1$ and $q_j^T q_{\ell} = 0$ for $j < \ell \leq k$. After we finish iteration i=j for that value of k, we have $q_j^T q_{k+1} = 0$ by the same argument we used above, and we also have that $q_{\ell}^T q_{k+1} = 0$, for $\ell \leq j-1$, since all we have done to q_{k+1} is to add a multiple of q_j to it, and q_j is orthogonal to q_{ℓ} . Thus, after iteration j, $q_j^T q_{k+1} = 0$ for $\ell \leq j$, and the induction is complete when j=k and k=n-1.