AMSC	/CMSC	660	Quiz 4		Fall 2004
	/ 011100	000	Q UIL I	•	1 011 2001

Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university's code of academic integrity in completing the quiz. Use no books, calculators, cellphones, other electronic devices, communication with others, scratchpaper, etc.

1. (10) Fill in each box with the name of a matrix decomposition that can

be used to efficiently solve the given probl	em in a stable manner.
Find the null space of a matrix	
Solve a least squares problem	
Solve a least squares problem	
when the matrix is well conditioned	
Determine the rank of a matrix	
Find the determinant of a matrix	
Determine whether a symmetric matrix	
is positive definite	

2. (10) Let W = givens(y) be a Matlab program that takes a 2×1 vector y as input and returns a Givens matrix W that makes Wy have a zero in its 2nd position.

Write a Matlab program that uses givens to reduce a matrix of the form

$$A = \left[\begin{array}{cccc} x & x & x & x \\ x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \end{array} \right]$$

to upper triangular form, where x indicates a nonzero element. (In other words, do a QR decomposition of this matrix, but don't worry about saving Q.)