1. (20) Fill in the following table, giving features of various algorithms for minimizing f(x). The first line has been done for you, as an example.

Method	convergence rate	Storage	f evals/itn	g evals/itn	H evals/itn
Truncated Newton	> 1	O(n)	1	$\leq n+1$	0
Newton	2	$O(n^2)$	0^{1}	1	1
Quasi-Newton	$> 1^2$	$O(n^2)$	0^{1}	1	0
steepest descent	1	O(n)	0^1	1	0
Conjugate gradients	1	O(n)	0^{1}	1	0

Notes on Answer:

- 1. Once the counts for the linesearch are omitted, no function evaluations are needed, but credit was given for 1, too, as long as you were consistent about it.
- 2. For a single step, Quasi-Newton is superlinear; it is n-step quadratic.
 - Assume that all of these methods are convergent and that any line search is exact (i.e., the true optimal value of the steplength parameter is used).
 - Don't include the cost of the line search in your table entries. We are omitting this cost because it is the same, independent of method.
 - f is the function, g is the gradient, and H is the Hessian matrix. "evals/itn" means the number of evaluations per iteration.
 - The convergence rate should be "1" for linear, "> 1" for superlinear, or "2" for quadratic.
 - Storage should be either O(1), O(n), or $O(n^2)$, where n is the number of variables (i.e., the dimension of x).
 - "Conjugate gradients" means the nonlinear cg method, not the one for solving linear systems (minimizing quadratics).