
AMSC/CMSC 661 Quiz 6 , Spring 2005

1. (10) Suppose you want to solve a linear system of equations Ax = b,
n = 100, 000, and have your choice of 2 preconditioners for GMRES:

• M1 creates a Ĝ1 with 5 small clusters of eigenvalues. 2 seconds and 106

storage locations are required to form M−1
1 z for an arbitrary vector z.

• M2 creates a Ĝ2 with 10 small clusters of eigenvalues. 1 second and
5 × 105 storage locations is required to form M−1

2 z for an arbitrary
vector z.

It takes .25 seconds and 106 storage locations to form Az. Which precondi-
tioner would you advise using in order to compute an approximate solution
to the problem? Why?

Answer: First, note that Ĝ = I − M−1N = M−1(M − N) = M−1A, so
each multiplication by Ĝ requires one multiplication by A and one solve of a
linear system involving M .

Consider M1. There are 5 clusters of eigenvalues, so we expect a good answer
in 5 iterations. Each iteration costs 2.25 sec (since the GMRES overhead
will be microseconds at most when n = 105), so the time will be about 11.25
sec. The storage required will be about 106 for multiplication by A, 106 for
multiplication by M−1

1 , and 5 × 105 for the P matrix.

Consider M2. There are 10 clusters of eigenvalues, so we expect a good
answer in 10 iterations. Each iteration costs 1.25 sec, so the time will be
about 12.5 sec. The storage required will be about 106 for multiplication by
A, 5 × 105 for multiplication by M−1

1 , and 10 × 105 for the P matrix.

So M1 should be faster, and M2 should require less storage. M1 is overall
probably the better choice.



2. (10) The following is the Lanczos algorithm, closely related to CG. As
usual, A is a matrix with nz nonzero elements and b is a vector of length n.
How much storage does the algorithm use? How many multiplications and
divisions does it perform? (Express your answers in terms of the parameters
n, k, and nz.)

r=b;

n mult beta = norm(b);

vsav=[];

beta0=beta;

v=zeros(n,1);

for i=1:k,

vold=v;

n div. v=r/beta;

nz mult av=A*v;

n mult alpha=v’*av;

2n mult r=av-alpha*v-beta*vold;

n mult beta=norm(r);

vsav=[vsav v];

alphasav(i)=alpha;

betasav(i)=beta;

end

Answer: n + (5n + nz)k multiplications and divisions.

Storage:

• A takes 3nz locations (Matlab sparse matrix).

• b, r, v, vold, av each take n locations.

• vsav takes nk locations.

• alphasav, betasav each take k locations.

Total: 3nz + (k + 5)n + 2k + O(1) locations.


