1. (10) Suppose you want to solve a linear system of equations Ax = b, n = 100,000, and have your choice of 2 preconditioners for GMRES:

- M_1 creates a \hat{G}_1 with 5 small clusters of eigenvalues. 2 seconds and 10⁶ storage locations are required to form $M_1^{-1}z$ for an arbitrary vector z.
- M_2 creates a \hat{G}_2 with 10 small clusters of eigenvalues. 1 second and 5×10^5 storage locations is required to form $M_2^{-1}z$ for an arbitrary vector z.

It takes .25 seconds and 10^6 storage locations to form Az. Which preconditioner would you advise using in order to compute an approximate solution to the problem? Why?

Answer: First, note that $\hat{G} = I - M^{-1}N = M^{-1}(M - N) = M^{-1}A$, so each multiplication by \hat{G} requires one multiplication by A and one solve of a linear system involving M.

Consider M_1 . There are 5 clusters of eigenvalues, so we expect a good answer in 5 iterations. Each iteration costs 2.25 sec (since the GMRES overhead will be microseconds at most when $n = 10^5$), so the time will be about 11.25 sec. The storage required will be about 10^6 for multiplication by A, 10^6 for multiplication by M_1^{-1} , and 5×10^5 for the P matrix.

Consider M_2 . There are 10 clusters of eigenvalues, so we expect a good answer in 10 iterations. Each iteration costs 1.25 sec, so the time will be about 12.5 sec. The storage required will be about 10⁶ for multiplication by $A, 5 \times 10^5$ for multiplication by M_1^{-1} , and 10×10^5 for the *P* matrix.

So M_1 should be faster, and M_2 should require less storage. M_1 is overall probably the better choice.

2. (10) The following is the Lanczos algorithm, closely related to CG. As usual, A is a matrix with nz nonzero elements and b is a vector of length n. How much storage does the algorithm use? How many multiplications and divisions does it perform? (Express your answers in terms of the parameters n, k, and nz.)

n mult	<pre>r=b; beta = norm(b); vsav=[]; beta0=beta; v=zeros(n,1);</pre>
	for i=1:k,
n div. $nz mult$ $n mult$ $2n mult$ $n mult$	<pre>vold=v; v=r/beta; av=A*v; alpha=v'*av; r=av-alpha*v-beta*vold; beta=norm(r);</pre>
	vsav=[vsav v];
	alphasav(i)=alpha; betasav(i)=beta;
	end

Answer: n + (5n + nz)k multiplications and divisions.

Storage:

- A takes 3nz locations (Matlab sparse matrix).
- b, r, v, vold, av each take n locations.
- vsav takes nk locations.
- alphasav, betasav each take k locations.

Total: 3nz + (k+5)n + 2k + O(1) locations.