
AMSC/CMSC 661 Scientific Computing II
Spring 2010

Solution of Elliptic PDEs
Part 2

Dianne P. O’Leary
c©2005,2010

These notes are based on the 2003 textbook
of Stig Larsson and Vidar Thomée.

Solution and error estimates using finite differences (p. 46)

• Since the development of easy-to-use finite element packages, finite
differences are becoming less popular:

– Interpolation to find the solution at points other than mesh points is
cumbersome.

– The formulas need to be fixed up near the boundary.

– For high order methods, ‘near the boundary’ is quite a large region.

• Finite differences still have some use for special problems such as Poisson’s
equation on a rectangle or box domain.

Recall:

u′(x) =
u(x + h)− u(x− h)

2h
+ O(h2) ,

u′′(x) =
u(x− h)− 2u(x) + u(x + h)

h2
+ O(h2)

for small values of h when u ∈ C4.

Unquiz 1: Consider the homogeneous-Dirichlet problem

Au = −uxx − uyy + cu = f

on the domain Ω = (0, 1)× (0, 1), with u = 0 on the boundary. Assume that
c ≥ 0 is a constant. Let h = 1/5 M = 6), and write the 16 finite difference
equations for u at x, y = .2, .4, .6, and .8.

Properties of the finite difference formulation:

• We obtain a system of linear equations AU = g, where g is determined by
the function f and the boundary conditions.

• A is (M − 1)2 × (M − 1)2, symmetric, and block tridiagonal with
tridiagonal blocks. In the jth row, the main diagonal element is 4/h2 + c
and the nonzero off-diagonal elements are −1/h2.

• The matrix A is row diagonally dominant: the main diagonal element is at
least as big as the sum of the absolute values of the off-diagonal elements.
This ensures that the matrix has no zero eigenvalues and therefore a
unique solution U exists.

1



• The finite difference approximation is formed from a 5-point stencil.

Your book develops an error estimate (when c = 0) from a discrete maximum
principle and a stability estimate, just as in the ODE-BVP case. Read pp.
46(bottom) - 49 if you are interested.

Solution and error estimates using finite elements (FE) (p. 57)

The plan:

• Derive the linear system of equations.

• Error analysis

• Practicalities

Deriving the FE system of equations

Notation: We consider this special case:

Au = −5 ·(a5 u) = f in Ω ⊂ R2

with u = 0 on Γ.

Assumptions:

• a(x) is a smooth function.

• a(x) ≥ α > 0 in Ω̄.

• f ∈ L2(Ω).

• Ω is convex and Γ is a polygon.

Recall the variational formulation

a(u, v) = (f, v), v ∈ H1
0

where

a(u, v) =
∫

Ω

(a5 u · 5v)dx

(f, v) =
∫

Ω

fvdx

For the ODE, we partitioned our domain into subintervals. Here, we partition Ω
into a collection of triangles Th so that

2



• Ω̄ =
⋃

K∈Th
K.

• hK is the diameter of the triangle K.

• h = maxK∈Th
hK .

• P is the set of vertices of triangles in Th, and these are called the nodes of
the triangulation. We number the interior nodes, those not on Γ, as
x1, . . . , xM .

• The triangulation is admissible, meaning that the intersection of any two
triangles is either empty, a node, or an entire edge of both triangles.
Picture (p. 58).

• We assume that the minimal angle in any of our triangles K is bounded
below, independent of h. (Notice what this means if we decide to refine
the mesh.)

We seek an approximate solution of a particular form:

• continuous,

• satisfying the boundary condition,

• and piecewise linear in each of the triangles K.

We call the space of such functions Sh and note that it is a subset of H1
0 , the

space where the solution lives.

A convenient basis

We can construct our solution using any basis for Sh, but one basis is particularly
convenient: the set of hat functions φi, i = 1, . . . ,M , designed to satisfy
φi(xi) = 1 and φi(xj) = 0 if i 6= j.

Picture.

Any function v ∈ Sh can be written as

v(x) =
M∑
i=1

viφi(x)

where vi = v(xi).

The resulting equations

Our original problem: Find u ∈ H1
0 satisfying

a(u, v) = (f, v)

for all v ∈ H1
0 .

3



Our new problem: Find uh ∈ Sh satisfying

a(uh, v) = (f, v)

for all v ∈ Sh.

Because the φi form a basis, our new problem becomes:

Find

uh =
M∑
i=1

uiφi(x)

satisfying
a(uh, φj) = (f, φj)

for j = 1, . . . ,M .

Unquiz 2: Write the resulting system of equations AU = g for Poisson’s equation
using the particular triangulation ... and compare with the answer to Unquiz 1. []

Some properties

• This method of constructing the discrete equations is called Galerkin’s
method and is characterized by seeking uh in some subspace of the space
H1

0 that contains the solution, and making the residual a(uh, v)− (f, v)
zero on that subspace.

• A is called the stiffness matrix and g is called the load vector.

• A is symmetric (because a(φi, φj) = a(φj , φi)) and V T AV = a(v, v) > 0
when

v =
M∑
i=1

viφi(x) 6= 0.

Therefore, the solution exists and is unique.

• For the triangulation of the Unquiz, A is block tridiagonal with tridiagonal
blocks. In general, A is sparse (since a(φi, φj) is usually zero) but not
quite this regular.

Some variations on our theme

• Higher order approximation

• Non-polygonal domains

Higher order approximation (p. 59)

We derived our finite element equation using the space of piecewise linear
functions (i.e., piecewise polynomials of degree 1) with a convenient basis, the
basis of hat functions.

4



We could also use higher order polynomials: quadratics, cubics, etc. The
corresponding hat functions still vanish at all nodes but one, but their support,
the domain over which they are nonzero, is now bigger.

We need more parameters (unknowns) to express our solution. For piecewise
quadratics, for example, instead of just solving for the values ui at the vertices of
the triangles, we need extra nodes.

A quadratic function of two variables

[]x2 + []xy + []y2 + []x + []y + []

is determined by 6 coefficients, so we choose 6 nodes in each triangle; see picture
on p. 59.

And we have a basis function for each node. At the vertices of the triangles we
use our old hat functions. At the new interior nodes, we specify a quadratic
function that vanishes at all nodes but one.

Picture: p. 57.

Non-polygonal domains

If Γ is not a polygon, then the triangulation does not fit Ω exactly.

Instead, we approximate it by a polygonal domain Ωh.

For piecewise linear functions, nothing is lost.

For higher-order polynomial elements, care needs to be taken in order not to lose
accuracy, but we won’t discuss this.

FE error analysis

We will derive 3 kinds of error bounds:

• L2 bounds.

• pointwise bounds.

• a posteriori bounds.

Deriving L2 error bounds

The L2 error analysis of the finite element method proceeds in two steps:

• Step 1: Show that for every function u ∈ H1
0 , there is a function ûh ∈ Sh

that is close to it.

• Step 2: Show that the system of equations yields a solution close to ûh.

5



Step 1: Approximability

For any u ∈ H1
0 , let ûh ∈ Sh be defined by

Ihu ≡ ûh =
M∑
i=1

u(xi)φi(x).

(This is the piecewise polynomial interpolating function.)

A standard result in approximation theory tells us that for piecewise linear
functions over the triangle K we have

‖Ihu− u‖K ≤ CKh2
K |u|2,K ,

‖ 5 (Ihu− u)‖K ≤ CKhK |u|2,K .

(The proof follows from Taylor series expansions (Bramble-Hilbert Lemma).)
(Remember notation: L2 norm of u′′.)

The constants CK grow if the triangle gets too skinny, and that is why we made
an assumption about the smallest angle.

So

‖Ihu− u‖ =

( ∑
K∈Th

‖Ihu− u‖2K

)1/2

≤

(∑
K

C2
Kh4

j |u|22,K

)1/2

≤ Ch2‖u‖2,

for all u ∈ H2 and similarly

|Ihu− u|1 ≤ Ch‖u‖2.

More generally, for polynomials of degree r − 1 (p. 61), for all u ∈ Hr,

‖Ihu− u‖K ≤ Chr
K |u|r,K ,

‖Ihu− u‖ ≤ Chr‖u‖r,

‖ 5 (Ihu− u)‖K ≤ Chr−1
K |u|r,K ,

|(Ihu− u)|1 ≤ Chr−1‖u‖r.

Note: These bounds are only of interest if the triangulation is approximately
uniform, with all hK ≈ h.

Step 2: uh is close to Ihu

We use the energy norm
‖v‖a = a(v, v)1/2.

6



Theorem 5.3a (p. 63):

(∗∗) ‖uh − u‖a = min
v∈Sh

‖v − u‖a

A note: Let e = u− uh. We know that a(u, v) = (f, v) and a(uh, v) = (f, v) for
all v ∈ Sh, so

(∗ ∗ ∗) a(e, v) = 0

for all v ∈ Sh. This means that the error is orthogonal to Sh, or, in other words,
uh is the orthogonal projection (with respect to the inner product a) of u onto
Sh, and therefore (∗∗) holds.

Theorem 5.3b (p. 63):
|uh − u|1 ≤ Ch‖u‖2.

This is nice, but it gives us a result on the energy norm, not the L2 norm, so we
need to work a little more.

Theorem 5.4 (p. 64):
‖e‖ ≤ Ch2‖u‖2.

Compare these three results with pp. 54-55.

Deriving pointwise error bounds

The error bound we just stated is error in an average sense, integrated over Ω.
Sometimes we need a pointwise error bound:

Theorem: (p. 66) Assume, in addition to our previous assumptions, that
hK ≥ ch for all triangles K, where c is a constant independent of h. (In other
words, no triangle is much smaller than any other.) Then for h sufficiently small,

‖uh − u‖C ≤ Ch2 log(1/h)‖u‖C2 .

Deriving a posteriori error bounds

A major disadvantage of the error bounds we have so far: they all include the
norm of the unknown solution u!

Therefore, they are not computable.

An a posteriori error bound is one that can be computed from the approximate
solution uh.

Theorem 5.6: (p. 66) Let

RK = h2
k‖Auh − f‖K + h

3/2
K ‖a(n · 5uh)‖Γ(K)−Γ(Ω),

7



where n · 5uh denotes the jump of the normal derivative of uh across the
boundary of K. Then

‖u− uh‖ ≤ C

(∑
K

R2
K

)1/2

.

Proof: Using duality; see p. 66.

FE practicalities

In order to compute with the FE method, we need to do these things:

• Triangulate Ω.

• Assemble the stiffness matrix and the right-hand side.

• Solve the linear system.

• Estimate the error.

• Refine the mesh if necessary.

• Compute quantities of interest.

In 3-d, we face the same issues, but (of course) it gets more complicated. We’ll
stick to 2-d here.

FE triangulation

Recall the properties that we need:

• If two triangles intersect, their intersection must be a vertex or an entire
edge.

• The triangles must not be too “skinny”.

• If Γ is not a polygon, the triangles must still hug the boundary closely.

Input: A description of the domain Ω:

• a list of vertices of a polygonal domain, or

• software defining the boundary as a function of θ ∈ [0, 2π], or

• a coarse triangulation of Ω.

plus some indication of how fine a mesh is desired.

Output: A data structure containing the triangles, coordinates of the nodes, and
adjacency information.

8



As you might imagine, this software is not easy to write!

Pointers to mesh generation software and the research community:
http://www-users.informatik.rwth-aachen.de/simroberts/
meshgeneration.html

Matlab has a mesh generator that we will use.

FE assembly of the stiffness matrix

(We also need the right-hand side, but the issues are similar.)

Recall that the (i, j) element of the stiffness matrix is

a(φi, φj) =
∫

Ω

a5 φi(x) · 5φj(x)dx

=
∑
K

∫
K

a5 φi(x) · 5φj(x)dx

and that almost all of the integrals in the summation are zero.

IMPORTANT Practical Note: If we are not careful, then we will end up
computing nT integrals for each matrix entry (where nT is the number of
triangles), making the work of assembling the matrix O(M3) (where M is the
number of nodes).

If we are careful, the work will be just O(M).

Efficient matrix assembly

Often, we take the data structure returned by the mesh generator and proceed
triangle by triangle.

In each triangle, we compute all nonzero terms

aK(φi, φj) =
∫

K

a5 φi(x) · 5φj(x)dx

by making use of the adjacency information.

We could store the terms in the data structure for the triangulation. This would
be quite sufficient if we plan to use an iterative method like conjugate gradients
for solution of the linear system of equations, since all we need to do is to form
matrix-vector products.

If we plan to use a direct method like Cholesky factorization, then we need a
more explicit representation of the matrix. Again, if we are not careful, we will do
too much work: there are O(M2) entries in the matrix, but only O(M) of them
are nonzero.

So as we compute the nonzero terms, we assign a storage location to the (i, j)
matrix entry and add the term into it.

9



As a result, we would have an array of row indices, column indices, and values of
the O(M) nonzero elements.

Actually computing the integrals in the terms

We need to compute terms of the form

aK(φi, φj) =
∫

K

a5 φi(x) · 5φj(x)dx.

Unless the problem is very simple, we will not be able to do this exactly.

Instead, we will need to use techniques of numerical integration. (See 660!)

We will approximate by

aK(φi, φj) ≈
l∑

`=1

w`,Ka5 φi(x`) · 5φj(x`).

where x` is a point in K and w`,K are the weights of the integration formula.

Very important warning:

• The use of numerical integration means that we are not solving the finite
element problem; instead, we are solving some approximation to it.

• Stiffness matrices tend to be ill-conditioned, meaning that small changes in
the data can make large changes in the computed solution.

• Therefore, the numerical integration formula needs to have error small
enough that the change in the answer is no larger than the error we expect
due to the finite element approximation.

Example: For piecewise linear finite elements, we can use a barycentric
integration rule, approximating

IK(s) ≡
∫

K

s(x)dx ≈ area(K)s(P ) ≡ qK(s)

where P is the average of the three vertices of the triangle, i.e., the barycenter of
the triangle. The error formula is

|IK(s)− qK(s)| ≤ Ch2
K |s|W 2

1 (K)

where the semi-norm |s|W 2
1 (K) is defined on p. 68.

Using error bounds like this, we can show that we solve a FE approximation to a
problem close to the given problem, and, therefore, since the elliptic equation is
stable, the solutions are close to each other.

10



See pp. 68-71 for details.

Notice that it is the theory that bails us out when we have to make these errors
in computation.

FE error estimation

Recall Theorem 5.6: (p. 66) Let

RK = h2
k‖Auh − f‖K + h

3/2
K ‖a(n · 5uh)‖Γ(K)−Γ(Ω),

where n · 5uh denotes the jump of the normal derivative of uh across the
boundary of K. Then

‖u− uh‖ ≤ C

(∑
K

R2
K

)1/2

.

We performed our FE calculation for some mesh with parameter h, and after we
compute our solution, we can form the error estimate

‖u− uh‖ ≤ C

(∑
K

R2
K

)1/2

.

What if it is bigger than we need it to be?

In that case we need to refine the mesh.

FE mesh refinement

Two possible refinements:

• Divide each triangle into 4. Why not just bisect every triangle? This gives
us a matrix 4 times as big, and every nonzero matrix entry needs to be
recomputed!

• Confine the refinement to the region where RK is large.

– This gives a much smaller increase in the size of the matrix.

– But we need to be careful to keep the triangulation admissible and
gradual.

FE computation of quantities of interest

Our computation is not finished when we solve the linear system and compute an
acceptable error estimate.

What still might need to be done:

• Display the solution graphically.

11



• Compute the maximum value of the solution (easy for piecewise linear
elements, more computationally expensive for higher order elements).

• Compute the energy norm of the solution.

• Compute derivatives of the solution. But this has lower accuracy than our
estimate of the solution. If we really need this, we might want to use a
mixed FE method, in which the derivative is approximated directly rather
than derived from u. (See Section 5.7 if you are interested.)

• . . ..

Summary

• We have shown existence, uniqueness, and stability of the solution to our
elliptic PDE.

• We have introduced several tools for analysis, including

– approximability,

– duality,

– the energy norm,

– regularity.

• We have defined a finite difference approximation to the elliptic PDE,
reducing the problem to solving a linear system of equations.

• We have defined a finite element approximation.

• We showed existence and uniqueness of the finite element approximation,
as well as an error bound.

• We have discussed the practicalities of finite element implementation,
except for efficient solution of the resulting system of linear equations.

12


