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The Elliptic Eigenvalue Problem

The importance of this section lies in three disjoint uses:

• Sometimes, eigenvalue problems arise in applications. For example, we
might be interested in the natural frequencies of vibration of a bridge or
membrane.

• Eigenfunction expansions can be used to solve elliptic PDEs (spectral
methods).

• The theory we develop is the basis for the Fourier / Wavelet discussion we
take up at the end of the course.

The plan

• What is an eigenvalue problem?

• Digression: properties of an orthonormal basis for a space.

• How do we solve an eigenproblem numerically?

What is an eigenvalue problem?

Review: Let

A =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 −4


Notice that

A


1
0
0
0

 =


1
0
0
0

 , A


0
1
0
0

 =


0
2
0
0

 , A


0
0
1
0

 =


0
0
3
0

 , A


0
0
0
1

 =


0
0
0

−4

 .
In other words, we have found 4 vectors, called eigenvectors of A, that have the
special property that multiplication by A just scales the vector.
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We call the scale factor the eigenvalue of A, and we can abbreviate the relation as

Aφj = λjφj

where, in our example, λ1 = −4, λ2 = 1, λ3 = 2, and λ4 = 3 are the eigenvalues
and the eigenvectors φj are the unit vectors.

Some properties of eigenvectors

• When the eigenvalues are distinct, the eigenvectors are unique, except that
they can be scaled by any nonzero number. We will assume that ‖φj‖ = 1.

• The eigenvectors are also linearly independent, so they form a basis for Rn.

• In fact, if A is symmetric, then eigenvectors corresponding to distinct
eigenvalues are orthogonal.

• Jargon: If all of the eigenvalues are positive, we say that A is positive
definite.

• The smallest eigenvalue λ1 is the value of the function

min
x6=0

xTAx

xTx

and this value is achieved for x = φ1

• The other eigenvalues can also be characterized as solutions to
minimization problems (or maximization problems).

The elliptic eigenvalue problem

Now, as an example, let
Au = −u′′,

and require u(0) = u(1) = 0.

Notice that for j = 1, 2, . . . ,

A sin(jπx) = (jπ)2 sin(jπx).

In other words, we have found functions φj = sin(jπx), called eigenfunctions of
A, that satisfy the boundary conditions and have the special property that
applying A just scales the function. We call the scale factor the eigenvalue of A,
and we can abbreviate the relation as

Aφj = λjφj

where λj = (jπ)2.

All of the properties that we listed for eigenvectors also hold for eigenfunctions.
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Formulating the elliptic eigenvalue problem

Strong formulation: Given A and homogeneous Dirichlet boundary conditions,
find numbers λ and functions φ ∈ H1

0 satisfying

Aφ = λφ.

We’ll assume in this chapter that the operator is just Aφ = −5 ·(a5 φ) + cφ.

(In fact, your book assumes Aφ = −52 φ.)

Weak formulation: Given A, find numbers λ and functions φ ∈ H1
0 satisfying

a(φ, v) = λ(φ, v)

for all v ∈ H1
0 , where a(φ, v) and (φ, v) are defined as before.

Some properties

Theorem 6.1: (p. 79)
6.1a: The eigenvalues of A are positive.
6.1b: If Aφ = λφ and Aψ = νψ and λ 6= ν, then (φ, ψ) = 0.

Proof:
6.1a: Suppose Aφ = λφ. Then

0 < a(φ, φ) = λ(φ, φ)

so λ > 0.

6.1b:

a(φ, ψ) = λ(φ, ψ),
a(ψ, φ) = ν(ψ, φ),

so, subtracting,
0 = (λ− ν)(φ, ψ)

which forces (φ, ψ) = 0. []

Digression: Orthonormal bases

Begin Digression: So the eigenfunctions are orthogonal. Let’s normalize them
(‖φj‖ = 1) and see what orthogonality + normalization = orthonormality tells us.

Definition: Suppose the {φj} are orthonormal and are in a space H. Then they
form an orthonormal basis for H if, given any v ∈ H and any ε > 0 there exist
coefficients aj and an integer N so that

‖v −
N∑

j=1

ajφj‖ < ε.
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We need a recipe for finding the coefficients aj .

Lemma 6.1a: (p. 82) The best approximation to v ∈ H by the first N functions
in the orthonormal basis {φj} is

vN =
N∑

j=1

(v, φj)φj .

Proof: Take any approximation, and compute the residual it makes:

‖v −
N∑

j=1

ajφj‖2 = (v −
N∑

j=1

ajφj , v −
N∑

k=1

akφk)

= (v, v)− 2
N∑

j=1

aj(v, φj) +
N∑

k=1

N∑
j=1

akaj(φk, φj)

= (v, v)− 2
N∑

j=1

aj(v, φj) +
N∑

j=1

a2
j

= (v, v) +
N∑

j=1

(aj − (v, φj))2 −
N∑

j=1

(v, φj)2,

and we make this as small as possible by making the middle term zero, setting
aj = (v, φj). []

Lemma 6.1b: Bessel’s inequality (p. 82) For all v ∈ H, if {φj} is a set of
orthonormal functions in H, then

∞∑
j=1

(v, φj)2 ≤ ‖v‖2.

Proof: For our choice of coefficients a1, . . . , aN ,

0 ≤ ‖v−
N∑

j=1

ajφj‖2 = (v, v)+
N∑

j=1

(aj−(v, φj))2−
N∑

j=1

(v, φj)2 = (v, v)−
N∑

j=1

(v, φj)2,

so
N∑

j=1

(v, φj)2 ≤ (v, v).

Take the limit as N →∞. []
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Lemma 6.1c: Parseval’s Relation (p. 82) For all v ∈ H, if {φj} is an orthonormal
basis for H, then

∞∑
j=1

(v, φj)2 = ‖v‖2.

Proof: For an orthonormal basis, the vN gets arbitrarily close to v, so the norm
must converge. []

End of digression.

A few more facts about eigenvalues and eigenfunctions

The following facts are proven in your book when A = −52, but we will take
them on faith for all elliptic operators:

• If A has an infinite number of eigenvalues, then λn →∞. (Thm. 6.3, p.
81)

• If A has an infinite number of eigenvalues, then the eigenfunctions form an
orthonormal basis for L2, and

a(v, v) =
∞∑

j=1

λj(v, φj)2 <∞

if and only if v ∈ H1
0 . (Thm. 6.4, p. 83)

• Min-Max Characterization of Eigenvalues:

λn = min
Vn

max
v∈Vn

a(v, v)
(v, v)

where Vn varies over all subspaces of H1
0 of dimension n. (Thm. 6.5, p.

84)

• Monotonicity: If Ω ⊂ Ω̃, then λn(Ω) ≥ λn(Ω̃). (p. 84)

Numerical solution of the elliptic eigenproblem

Idea:

• Replace A by Ah, where Ah is the finite difference matrix or finite element
stiffness matrix.

• Use the eigenvalues λn,h of Ah as approximations to the smallest
eigenvalues of A.

• For finite differences, the eigenvectors of Ah contain approximate values of
the eigenfunctions at the mesh points.

• For finite elements, the eigenvectors of Ah contain coefficients in an
expansion of the eigenfunction in the finite element basis.
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We’ll just consider the finite element approximation.

Accuracy of the computed eigenvalues

Theorem 6.7: (p. 90) Notation:

• λn,h = eigenvalue n of Ah.

• λn = eigenvalue n of A.

There exist constants C and h0, depending on n, such that when h < h0,

λn ≤ λn,h ≤ λn + Ch2.

Proof of 1st inequality:

λn = min
Vn

max
v∈Vn

a(v, v)
(v, v)

≤ min
Vn⊂Sh

max
v∈Vn

a(v, v)
(v, v)

= λn,h.

We’ll take the 2nd inequality on faith. []

Accuracy of the computed eigenfunctions

Theorem: (extension of Theorem 6.8, p. 92) Notation:

• φn,h = function obtained from the eigenvector of Ah (piecewise linear
basis functions) corresponding to a simple eigenvalue λn,h.

• φn = eigenfunction of A corresponding to a simple eigenvalue λn.

There exist constants C and h0, depending on n, such that when h < h0,

‖φn,h − φn‖ ≤ Ch2.
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