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The Elliptic Eigenvalue Problem

The importance of this section lies in three disjoint uses:

e Sometimes, eigenvalue problems arise in applications. For example, we
might be interested in the natural frequencies of vibration of a bridge or
membrane.

e Eigenfunction expansions can be used to solve elliptic PDEs (spectral
methods).

e The theory we develop is the basis for the Fourier / Wavelet discussion we
take up at the end of the course.

The plan

e What is an eigenvalue problem?
e Digression: properties of an orthonormal basis for a space.

e How do we solve an eigenproblem numerically?

What is an eigenvalue problem?

Review: Let

1 0 0 O
0 2 0 O
A_0030
0 0 0 —4
Notice that
1 1 0 0 0 0 0
0 0 1 2 0 0 0
A07O’A070’A173’A07
0 0 0 0 0 0 1 —

In other words, we have found 4 vectors, called eigenvectors of A, that have the
special property that multiplication by A just scales the vector.
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We call the scale factor the eigenvalue of A, and we can abbreviate the relation as

Agj = Ao,

where, in our example, A\ = —4, Ay = 1, A3 = 2, and Ay = 3 are the eigenvalues
and the eigenvectors ¢; are the unit vectors.

Some properties of eigenvectors

e When the eigenvalues are distinct, the eigenvectors are unique, except that
they can be scaled by any nonzero number. We will assume that ||¢;|| = 1.

e The eigenvectors are also linearly independent, so they form a basis for R".

e In fact, if A is symmetric, then eigenvectors corresponding to distinct
eigenvalues are orthogonal.

e Jargon: If all of the eigenvalues are positive, we say that A is positive
definite.

e The smallest eigenvalue \; is the value of the function

a2l Ax
min —
z#0 T T

and this value is achieved for z = ¢,

e The other eigenvalues can also be characterized as solutions to
minimization problems (or maximization problems).

The elliptic eigenvalue problem

Now, as an example, let
Au = —u”,

and require u(0) = u(1) = 0.
Notice that for j =1,2,...,
Asin(jrz) = (jm)? sin(jmz).

In other words, we have found functions ¢; = sin(jnz), called eigenfunctions of
A, that satisfy the boundary conditions and have the special property that
applying A just scales the function. We call the scale factor the eigenvalue of A,
and we can abbreviate the relation as

Adj = Ajb;

where \; = (jm)2.

All of the properties that we listed for eigenvectors also hold for eigenfunctions.



Formulating the elliptic eigenvalue problem

Strong formulation: Given A and homogeneous Dirichlet boundary conditions,
find numbers \ and functions ¢ € H} satisfying

Ao = A\o.
We'll assume in this chapter that the operator is just Ap = — 7 -(a 7 ¢) + co.
(In fact, your book assumes A¢ = — 72 ¢.)

Weak formulation: Given A, find numbers \ and functions ¢ € H} satisfying

a((ba U) = )‘((b’ U)

for all v € H}, where a(¢,v) and (¢,v) are defined as before.

Some properties

Theorem 6.1: (p. 79)
6.1a: The eigenvalues of A are positive.

6.1b: If Ap = A¢p and Ay = vip and X # v, then (p,v) = 0.

Proof:
6.1a: Suppose A¢p = Ap. Then

0 <a(¢,¢) = A¢, )

so A > 0.
6.1b:
a(g, v Mo, ),
a(y, ¢ v(, )
so, subtracting,
0=A-v)(e,v)

which forces (¢,1) = 0. ]

Digression: Orthonormal bases

Begin Digression: So the eigenfunctions are orthogonal. Let's normalize them
(Il¢;]l = 1) and see what orthogonality + normalization = orthonormality tells us.

Definition: Suppose the {¢;} are orthonormal and are in a space H. Then they
form an orthonormal basis for H if, given any v € H and any € > 0 there exist
coefficients a; and an integer NV so that

N
lv =" a;é;ll <e
i=1



We need a recipe for finding the coefficients a;.

Lemma 6.1a: (p. 82) The best approximation to v € H by the first N functions
in the orthonormal basis {¢;} is

N

un =Y (0,05)8;.

j=1
Proof: Take any approximation, and compute the residual it makes:
N N N
v =" a;;]? vaamj,vaam)
j=1 j=1 =
22% 00+ 3 Y .6

k‘ljl

N

v)—ZZaj(v,@)—i—Za?
N

= (v,v) +Z vng Zv% ,
j=1

Jj=1

2

and we make this as small as possible by making the middle term zero, setting

aj = (v, ;). ]

Lemma 6.1b: Bessel's inequality (p. 82) For all v € H, if {¢;} is a set of
orthonormal functions in H, then

D (0,05)% < lo]*.
j=1
Proof: For our choice of coefficients aq,...,an,
N N N N
0< =3 aj651° = (v,0)+_(a5=(v,6))) =D _(v:65)° = (v,0)= (v,6;)%,
j=1 Jj=1 j=1 j=1
SO
N
D (0,05)° < (v,0)
j=1

Take the limit as N — oco. []



Lemma 6.1c: Parseval's Relation (p. 82) For all v € H, if {¢;} is an orthonormal
basis for H, then

D (0.8 = ol

Jj=1

oo
Proof: For an orthonormal basis, the vy gets arbitrarily close to v, so the norm

must converge. [|

End of digression.

A few more facts about eigenvalues and eigenfunctions

The following facts are proven in your book when A = —572, but we will take
them on faith for all elliptic operators:

e If A has an infinite number of eigenvalues, then A\, — co. (Thm. 6.3, p.
81)

e If A has an infinite number of eigenvalues, then the eigenfunctions form an
orthonormal basis for Lo, and

a(v,v) = Z)\j(v,cbj)Q < o0
j=1

if and only if v € Hj. (Thm. 6.4, p. 83)

e Min-Max Characterization of Eigenvalues:

A, = min max a(v,v)
Vi veVn (v,0)

where V,, varies over all subspaces of H& of dimension n. (Thm. 6.5, p.
84)

e Monotonicity: If 2 C Q, then A, () > \,(Q). (p. 84)

Numerical solution of the elliptic eigenproblem

Idea:
e Replace A by Aj, where Ay, is the finite difference matrix or finite element
stiffness matrix.

e Use the eigenvalues )\, ;, of A;, as approximations to the smallest
eigenvalues of A.

e For finite differences, the eigenvectors of A;, contain approximate values of
the eigenfunctions at the mesh points.

e For finite elements, the eigenvectors of A;, contain coefficients in an
expansion of the eigenfunction in the finite element basis.



We'll just consider the finite element approximation.

Accuracy of the computed eigenvalues

Theorem 6.7: (p. 90) Notation:

e )\, = eigenvalue n of Ay.

e )\, = eigenvalue n of A.

There exist constants C' and hg, depending on n, such that when h < hg,

A < An < Ay + CR2

Proof of 1st inequality:

a(v,v)

A, = minmax
Vi veVy (v,0)

. a(v,v)
< min max
VnCSpveV, (v,v)

= )\n,h'

We'll take the 2nd inequality on faith. []

Accuracy of the computed eigenfunctions

Theorem: (extension of Theorem 6.8, p. 92) Notation:

e ¢, = function obtained from the eigenvector of A; (piecewise linear
basis functions) corresponding to a simple eigenvalue \,, .

e ¢, = eigenfunction of A corresponding to a simple eigenvalue \,,.

There exist constants C' and hg, depending on n, such that when h < hg,

[ fn.n — dnll < Ch2.



