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What is the FMM?

In many applications, it is important to compute, for example,

• the gravitational potential arising from a distribution of masses

• electrostatic potential arising from a distribution of charges

Picture. We’ll talk about charges, for definiteness.

Suppose that the charge on source particle j, which is located at position sj , is
qj , j = 1, . . . , n. Then to compute the potential pk at target particle k, located
at position tk, we compute

pk =
n∑

j=1

qj

‖tk − sj‖β
.

k = 1, . . . ,m.

For notational convenience, we take β = 1, but it really doesn’t matter.

Notice that computing all of the potentials is just a matrix-vector product

p = Aq

where

akj =
1

‖tk − sj‖
.

The Fast Multipole Method (FMM) provides a fast way to approximately
evaluate Aq.
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What is the underlying idea?

p = Aq

where

akj =
1

‖tk − sj‖
.

• Suppose that many of the source particles were located at the same place.
Then several columns of the matrix A would be identical, and we could
compress the matrix to one with fewer columns by adding the
corresponding elements of q.

• Similarly, if several of the target particles were at one location, then we
could delete the redundant rows of the matrix A.

In either case, we end up with an equivalent problem with a smaller matrix and
therefore a faster matrix-vector product.

An approximation

The FMM is built on the idea of approximating the matrix-vector product by
moving source particles that are close to each other, and far from the target, to
their centroid, and doing the same with the targets.

This means that the matrix A is replaced by a matrix Ar of rank r < m, n, and
the cost of matrix-vector product is reduced from O(mn) to O(mr + nr).

If the approximation is not accurate enough, a correction term can be computed.

All of this can be done recursively.

The approximation for single clusters of sources and targets

Theorem: Suppose we have a set of sources, centered at sc, and a set of targets,
centered at tc, with α < 1 chosen so that

max
j
‖sj − sc‖+ max

k
‖tk − tc‖ ≤ α‖tc − sc‖.

Then given any integer p ≥ 0

A = Ar + A� E

where

• Ar has rank at most r = (p + 1)(2p + 1).

• � denotes the Hadamard matrix product

(A� B)kj = akjbkj .
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• The elements of E are bounded by

|ekj | ≤
1 + α

1− α
αp−1.

Note: We can make this arbitrarily accurate by choosing r large enough.
(r = min(m,n) gives the exact result)

What if the sources and targets are interspersed?

Then partition them!

In 1-d, for example, divide the sources into those centered around so < 0 and
those not, and divide the targets in a similar way. Then

A = Af + An

where

Af =
[

0 Ao,n

An,o 0

]
represents the far-field interactions and

An =
[

Ao,o 0
0 An,n

]
represents the near-field interactions.

Then multiplication by Af can be done by FMM.

The recursion

We are left with the problem of forming Ao,oqo and An,nqn. These are two
smaller problems of the same form, so we just recurse!

One final trick

If the original sources and targets are located at the mesh points of a grid, then
the matrix A has Toeplitz or block-Toeplitz structure, and the multiplication can
be done very quickly using FFTs.

The work

The FMM has number of multiplications and additions proportional to
O(n log2 n) (when n ≥ m). This is a great savings over the O(mn) count of the
original algorithm.

A connection with PDEs

Green’s functions can be interpreted as charge distributions.
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