AMSC/CMSC 661 Scientific Computing II Spring 2010 Solution of Ordinary Differential Equations, Boundary Value Problems Part 2 Dianne P. O'Leary ©2005,2010 These notes are based on the 2003 textbook of Stig Larsson and Vidar Thomée.

Solution and error estimates using finite differences (p. 43)

Note: A small part of this material is covered in 660, too.

Notation (a slight change):

$$\mathcal{A}u = -au'' + bu' + cu = f$$

with a, b, c smooth and a(x) > 0, $c(x) \ge 0$ in $\overline{\Omega}$.

We would like to write down an approximation to this equation that would permit us to solve for values of u at selected points in [0, 1].

Unquiz 2: Suppose u has 4 continuous derivatives. Prove that the central difference approximations satisfy

$$u'(x) = \frac{u(x+h) - u(x-h)}{2h} + O(h^2),$$

$$u''(x) = \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} + O(h^2)$$

for small values of h.

More formally,

$$\left| u''(x) - \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} \right| \le Ch^2 |u|_{C^4}$$

and similarly for u'(x), where

$$|u|_{\mathcal{C}^4} = \max_{x \in \bar{\Omega}} |u^{\prime \prime \prime \prime}(x)|$$

So the finite difference approach is to choose mesh points $x_j = jh$, where h = 1/M for some large integer M, and solve for $u_j \approx u(x_j)$ for j = 0, 1, ..., M.

Unquiz 3: Consider the equation

$$\mathcal{A}u = -u'' + bu' + u = f$$

where b(x) = x. Let M = 5, and write the 4 finite difference equations for u at x = .2, .4, .6, and .8. []

Properties of the finite difference formulation:

- We obtain a system of linear equations AU = g, where g is determined by the function f and the boundary conditions.
- A is $(M-1) \times (M-1)$ and tridiagonal. In the *j*th row, the main diagonal element is $2a_j/h^2 + c_j$ and the off-diagonal elements are $-(a_j/h^2 \pm b_j/(2h))$. (The book's A is h^2 times ours.)
- For small enough *h*, the matrix *A* is row diagonally dominant: the main diagonal element is at least as big as the sum of the absolute values of the off-diagonal elements. This ensures that the matrix has no zero eigenvalues and therefore a unique solution *U* exists.

Now we need an error estimate, which we obtain from

- a discrete maximum principle.
- a stability estimate.

A discrete maximum principle

Lemma 4.1 (p. 44): Assume h is small enough that $a_j \pm \frac{1}{2}hb_j \ge 0$ and that $AU \le 0$.

• (i) If c = 0, then

$$\max U_j = \max(U_0, U_M).$$

• (ii) If $c \ge 0$ then

$$\max_{j} U_j \le \max(U_0, U_M, 0)$$

Proof of (i): The *j*th equation $(1 \le j \le M - 1)$:

$$2a_jU_j/h^2 - (a_j + hb_j/2)U_{j-1}/h^2 - (a_j - hb_j/2)U_{j+1}/h^2 = g_j \le 0$$

so

$$U_{j} = \frac{h^{2}}{2a_{j}}g_{j} + \frac{a_{j} - hb_{j}/2}{2a_{j}}U_{j+1} + \frac{a_{j} + hb_{j}/2}{2a_{j}}U_{j-1}$$
$$\leq \frac{a_{j} - hb_{j}/2}{2a_{j}}U_{j+1} + \frac{a_{j} + hb_{j}/2}{2a_{j}}U_{j-1}.$$

Suppose U_j is the maximum. Then $U_j = U_{j-1} = U_{j+1}$ because the coefficients on the right add to 1. Continuing this reasoning, we see that U is constant, so the result holds. Therefore, either U is constant or the max occurs at an endpoint. []

A stability estimate

We use the ∞ -norm of the vector U:

$$||U||_{\infty} = \max_{j} |U_{j}|$$

Lemma 4.2 (p. 45): If b = 0, then

$$||U||_{\infty} \le \max(|U_0|, |U_M|) + C||AU||_{\infty},$$

where C depends on \mathcal{A} but not h or U.

Proof: Let $w(x) = x - x^2$, $W_j = w(x_j)$, and

$$\alpha = \min_{x \in \bar{\Omega}} a(x).$$

Then

$$\begin{aligned} (AW)_j &= (2a_j + h^2 c_j) W_j / h^2 - a_j W_{j-1} / h^2 - a_j W_{j+1} / h^2 \\ &= c_j W_j + \frac{a_j (2x_j - 2x_j^2 - (x_j - h) + (x_j - h)^2 - (x_j + h) + (x_j + h)^2)}{h^2} \\ &= c_j W_j + 2a_j \\ &\geq 2\alpha. \end{aligned}$$

Now let

$$V_j^{\pm} = \pm U_j - (2\alpha)^{-1} ||AU||_{\infty} W_j,$$

so that

$$(AV)_{j}^{\pm} = \pm (AU)_{j} - (2\alpha)^{-1} \|AU\|_{\infty} (AW)_{j} \le 0.$$

Since $W_0 = W_M = 0$, we conclude from Lemma 4.1 that

$$V_j^{\pm} = \pm U_j - (2\alpha)^{-1} ||AU||_{\infty} W_j \le \max(|U_0|, |U_M|)$$

and therefore

$$|U_j| \le \max(|U_0|, |U_M|) + (2\alpha)^{-1} ||AU||_{\infty} |W_j|,$$

and since

$$\max_{j} |W_{j}| = \max_{j} x_{j} - x_{j}^{2} = \max_{j} 1/4 - (x_{j} - 1/2)^{2} = 1/4$$

the result follows with $C = 1/(8\alpha)$. []

The error in the finite difference solution

Theorem 4.1 (p. 45): If b = 0, then

$$\max_{j} |U_j - u(x_j)| \le Ch^2 ||u||_{C^4}.$$

Proof: Let $e_j = U_j - u(x_j)$. Then by Unquiz 2,

$$|(Ae)_j| \le Ch^2 ||u||_{C^4},$$

so the result follows from Lemma 4.2, noting that $e_0=e_M=0.\ []$

Summary

- The finite difference approximation to our problem leads to a system of linear equations to be solved.
- The approximation is $O(h^2) = O(M^{-2})$, so the more accuracy we need in the solution, the larger the system.
- To get approximations to the solution at points between mesh points, we could use interpolation; see van Loan's text for details.

Solution and error estimates using finite elements (p. 51)

Notation:

$$\mathcal{A}u = -(au')' + cu = f \text{ in } \Omega = (0,1)$$

with u(0) = u(1) = 0.

Assumptions:

- a(x) and c(x) smooth functions.
- $a(x) \ge \alpha > 0$, $c(x) \ge 0$ in $\overline{\Omega}$.
- $f \in L_2(\Omega)$.

Recall the variational formulation

$$a(u,v) = (f,v), v \in H_0^1$$

where

$$a(u,v) = \int_{\Omega} (au'v' + cuv)dx$$

(f,v) =
$$\int_{\Omega} fvdx$$

As in finite differences, we choose a mesh $0 = x_0 < x_1 < \ldots < x_M = 1$.

$$h_j = x_j - x_{j-1},$$

 $K_j = [x_{j-1}, x_j],$
 $h = \max_j h_j.$

But rather than solve for u at the mesh points, we seek an approximate solution of a particular form:

- continuous,
- satisfying the boundary conditions,
- and piecewise linear in each of the subintervals K_j .

We call the space of such functions S_h and note that it is a subset of H_0^1 , the space where the solution lives.

A convenient basis

We can construct our solution using any basis for S_h , but one basis is particularly convenient: the set of hat functions ϕ_i , i = 1, ..., M - 1, where

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}} & x \in [x_{i-1}, x_i] \\ \\ \frac{x - x_{i+1}}{x_i - x_{i+1}} & x \in [x_i, x_{i+1}] \\ \\ 0 & \text{otherwise} \end{cases}$$

These are designed to satisfy $\phi_i(x_i) = 1$ and $\phi_i(x_j) = 0$ if $i \neq j$.

Picture.

Any function $v \in S_h$ can be written as

$$v(x) = \sum_{i=1}^{M-1} v_i \phi_i(x)$$

where $v_i = v(x_i)$.

The resulting equations

Our original problem: Find $u \in H_0^1$ satisfying

$$a(u,v) = (f,v)$$

for all $v \in H_0^1$.

Our new problem: Find $u_h \in S_h$ satisfying

$$a(u_h, v) = (f, v)$$

for all $v \in S_h$.

Because the ϕ_i form a basis, our new problem becomes: Find

$$u_h = \sum_{i=1}^{M-1} u_i \phi_i(x)$$

satisfying

$$a(u_h,\phi_j) = (f,\phi_j)$$

for j = 1, ..., M - 1.

Unquiz 4: Write the resulting system of equations AU = g and compare with the answer to Unquiz 3. []

Some properties

- This method of constructing the discrete equations is called Galerkin's method and is characterized by seeking u_h in some subspace of the space H_0^1 that contains the solution, and making the residual $a(u_h, v) (f, v)$ zero on that subspace.
- A is called the stiffness matrix and g is called the load vector.
- A is symmetric (because $a(\phi_i, \phi_j) = a(\phi_j, \phi_i)$) and $V^T A V = a(v, v) > 0$ when

$$v = \sum_{i=1}^{M-1} v_i \phi_i(x) \neq 0.$$

Therefore, the solution exists and is unique.

• A is tridiagonal.

Error analysis

The error analysis of the finite element method proceeds in two steps:

- Step 1: Show that for every function $u \in H_0^1$, there is a function $\hat{u}_h \in S_h$ that is close to it.
- Step 2: Show that the system of equations yields a solution close to \hat{u}_h .

Step 1: Approximability

For any $u \in H_0^1$, let $\hat{u}_h \in S_h$ be defined by

$$I_h u \equiv \hat{u}_h = \sum_{i=1}^{M-1} u(x_i)\phi_i(x).$$

(This is the piecewise linear interpolating function.)

A standard result in approximation theory tells us that over the interval ${\cal K}_j$ we have

$$\|I_h u - u\|_{K_j} \leq Ch_j^2 |u|_{2,K_j}, |(I_h u)' - u'\|_{K_j} \leq Ch_j |u|_{2,K_j}.$$

(The proof follows from Taylor series expansions.)

(Remember notation: $|u|_2 = L_2$ norm of u''.)

So

$$\|I_h u - u\| = \left(\sum_{j=1}^{M-1} \|I_h u - u\|_{K_j}^2\right)^{1/2}$$

$$\leq \left(\sum_{j=1}^{M-1} C^2 h_j^4 |u|_{2,K_j}^2\right)^{1/2}$$

$$\leq Ch^2 \|u\|_2,$$

and similarly

$$||(I_h u)' - u'|| \le Ch ||u||_2.$$

Step 2: u_h is close to $I_h u$

We use the energy norm

$$||v||_a = a(v,v)^1/2.$$

Theorem 5.1a (p. 54):

$$(**) \|u_h - u\|_a = \min_{v \in S_h} \|v - u\|_a$$

A note: Let $e = u - u_h$. We know that a(u, v) = (f, v) and $a(u_h, v) = (f, v)$ for all $v \in S_h$, so

$$(***) a(e,v) = 0$$

for all $v \in S_h$. This means that the error is orthogonal to S_h , or, in other words, u_h is the orthogonal projection (with respect to the inner product a) of u onto S_h , and therefore (**) holds, as we now prove in detail.

Proof: Using (***), we see that for any $v \in S_h$,

 $||e||_a^2 = a(e,e) = a(e,u-u_h-v) \equiv a(e,u-\hat{v}) \le ||e||_a ||u-\hat{v}||_a,$

where $\hat{v} = v + u_h \in S_h$. Therefore, $\|e\|_a \le \|u - \hat{v}\|_a$ for all $\hat{v} \in S_h$. []

Theorem 5.1b (p. 54):

$$||u'_h - u'|| \le Ch ||u||_2$$

Proof:

Notice that if $v \in H_0^1$, then

$$\begin{split} \|v\|_{a}^{2} &= \int_{0}^{1} a(x)(v'(x))^{2} + c(x)v(x)^{2}dx \\ &\geq \min_{x \in [0,1]} a(x) \int_{0}^{1} (v'(x))^{2}dx \\ &\geq \alpha \|v'\|^{2} \end{split}$$

and

$$\begin{split} \|v\|_{a}^{2} &= \int_{0}^{1} a(x)(v'(x))^{2} + c(x)v(x)^{2}dx \\ &\leq \max_{x \in [0,1]} a(x) \int_{0}^{1} (v'(x))^{2}dx + \max_{x \in [0,1]} c(x) \int_{0}^{1} (v(x))^{2}dx \\ &\leq C \|v'\|^{2} + C \|v\|^{2} \\ &\leq C \|v'\|^{2}, \end{split}$$

where the last step follows from equation (2.17). Thus,

(*) $\sqrt{\alpha} \|v'\| \le \|v\|_a \le C \|v'\|$

for $v \in H_0^1$. Now, Theorem 5.1a implies

 $\|e\|_a \le \|z - u\|_a$

for all $z\in S_h$, and since $z-u\in H^1_0$, by (*) we conclude that

$$||e||_a \le ||z - u||_a \le C ||z' - u'||$$

Therefore,

$$|e||_a \le C \min_{z \in S_b} ||z' - u'||$$

so, using (*) again,

$$||e'|| \le C ||e||_a \le C \min_{z \in S_h} ||z' - u'||.$$

Now let $z = I_h u$ and use the interpolation bound

$$||(I_h u)' - u'|| \le Ch ||u||_2.[]$$

This is nice, but it gives us a result on the energy norm, not the L_2 norm, so we need to work a little more.

Theorem 5.2 (p. 55):

$$||e|| \le Ch^2 ||u||_2.$$

Proof: We use a duality argument.

 $\text{Original problem: Find } u \in H^1_0 \text{ such that } a(u,\phi) = (f,\phi) \text{ for all } \phi \in H^1_0.$

Dual problem: Find $\phi \in H^1_0$ such that $a(w, \phi) = (w, e)$ for all $w \in H^1_0$.

We proved that

$$\|\phi\|_1 \le C \|e\|,$$

but it is also true (see (2.22)) that

$$\|\phi\|_2 \le C \|e\|.$$

Now

$$\begin{array}{lll} (e,e) = & \|e\|^2 & (\text{definition}) \\ &= & a(e,\phi) & (a(w,\phi) = (w,e)) \\ &= & a(e,\phi-I_h\phi) & (\text{orthogonality}) \\ &\leq & \|e\|_a\|(\phi-I_h\phi)\|_a & \text{Cauchy-Schwarz} \\ &\leq & C\|e'\|\|(\phi-I_h\phi)'\| & (*) \\ &\leq & Ch\|e'\|\|\phi\|_2 & (\text{approximability}) \\ &\leq & Ch\|e'\|\|e\|, & (\text{previous equation}) \end{array}$$

so $||e|| \leq Ch ||e'||$, and by Theorem 5.1b, this is bounded by $Ch^2 ||u||_2$. []

Higher order approximation

We derived our finite element equation using the space of piecewise linear functions (i.e., piecewise polynomials of degree 1) with a convenient basis, the basis of hat functions.

We could also use higher order polynomials: quadratics, cubics, etc. The basis we choose consists of our old hat functions plus quadratic or cubic hat functions that vanish at all mesh points.

Picture: p. 57.

Because the approximability properties are better, we get higher order estimates for the error: if we use piecewise polynomials of degree r - 1, then

$$\begin{aligned} \|u - u_h\| &\leq Ch^r \|u\|_r, \\ \|u' - u'_h\| &\leq Ch^{r-1} \|u\|_r, \end{aligned}$$

when $u \in H^r$.

h-p methods

Result: If we want a better approximation, we have two choices:

- decrease h.
- increase r.

The parameter r is often called p in the literature, so the resulting adaptive methods are called h-p methods.

Summary

- We have shown existence, uniqueness, and stability of the solution to our ODE-BVP.
- We have introduced several tools for analysis, including
 - the maximum principle,
 - Green's functions,
 - approximability,
 - duality,
 - the energy norm,
 - regularity.

- We have defined a finite difference approximation to the ODE-BVP, reducing the problem to solving a linear system of equations.
- We showed existence and uniqueness of the finite difference approximation, as well as an error bound.
- Omitted: We could also have applied shooting methods to solve our ODE-BVP (660).
- We have defined a finite element approximation.
- We showed existence and uniqueness of the finite element approximation, as well as an error bound.