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Solution and error estimates using finite differences (p. 43)

Note: A small part of this material is covered in 660, too.

Notation (a slight change):

Au = −au′′ + bu′ + cu = f

with a, b, c smooth and a(x) > 0, c(x) ≥ 0 in Ω̄.

We would like to write down an approximation to this equation that would
permit us to solve for values of u at selected points in [0, 1].

Unquiz 2: Suppose u has 4 continuous derivatives. Prove that the central
difference approximations satisfy

u′(x) =
u(x + h)− u(x− h)

2h
+ O(h2) ,

u′′(x) =
u(x− h)− 2u(x) + u(x + h)

h2
+ O(h2)

for small values of h. []

More formally,∣∣∣∣u′′(x)− u(x− h)− 2u(x) + u(x + h)
h2

∣∣∣∣ ≤ Ch2|u|C4

and similarly for u′(x), where

|u|C4 = max
x∈Ω̄

|u′′′′(x)|

So the finite difference approach is to choose mesh points xj = jh, where
h = 1/M for some large integer M , and solve for uj ≈ u(xj) for j = 0, 1, . . . ,M .

Unquiz 3: Consider the equation

Au = −u′′ + bu′ + u = f

where b(x) = x. Let M = 5, and write the 4 finite difference equations for u at
x = .2, .4, .6, and .8. []

Properties of the finite difference formulation:
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• We obtain a system of linear equations AU = g, where g is determined by
the function f and the boundary conditions.

• A is (M − 1)× (M − 1) and tridiagonal. In the jth row, the main diagonal
element is 2aj/h2 + cj and the off-diagonal elements are
−(aj/h2 ± bj/(2h)). (The book’s A is h2 times ours.)

• For small enough h, the matrix A is row diagonally dominant: the main
diagonal element is at least as big as the sum of the absolute values of the
off-diagonal elements. This ensures that the matrix has no zero eigenvalues
and therefore a unique solution U exists.

Now we need an error estimate, which we obtain from

• a discrete maximum principle.

• a stability estimate.

A discrete maximum principle

Lemma 4.1 (p. 44): Assume h is small enough that aj ± 1
2hbj ≥ 0 and that

AU ≤ 0.

• (i) If c = 0, then
max

j
Uj = max(U0, UM ).

• (ii) If c ≥ 0 then
max

j
Uj ≤ max(U0, UM , 0).

Proof of (i): The jth equation (1 ≤ j ≤ M − 1):

2ajUj/h2 − (aj + hbj/2)Uj−1/h2 − (aj − hbj/2)Uj+1/h2 = gj ≤ 0

so

Uj =
h2

2aj
gj +

aj − hbj/2
2aj

Uj+1 +
aj + hbj/2

2aj
Uj−1

≤ aj − hbj/2
2aj

Uj+1 +
aj + hbj/2

2aj
Uj−1.

Suppose Uj is the maximum. Then Uj = Uj−1 = Uj+1 because the coefficients
on the right add to 1. Continuing this reasoning, we see that U is constant, so
the result holds. Therefore, either U is constant or the max occurs at an
endpoint. []

A stability estimate

We use the ∞-norm of the vector U :

‖U‖∞ = max
j
|Uj |.
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Lemma 4.2 (p. 45): If b = 0, then

‖U‖∞ ≤ max(|U0|, |UM |) + C‖AU‖∞,

where C depends on A but not h or U .

Proof: Let w(x) = x− x2, Wj = w(xj), and

α = min
x∈Ω̄

a(x).

Then

(AW )j = (2aj + h2cj)Wj/h2 − ajWj−1/h2 − ajWj+1/h2

= cjWj +
aj(2xj − 2x2

j − (xj−h) + (xj − h)2 − (xj+h) + (xj + h)2)
h2

= cjWj + 2aj

≥ 2α.

Now let
V ±

j = ±Uj − (2α)−1‖AU‖∞Wj ,

so that
(AV )±j = ±(AU)j − (2α)−1‖AU‖∞(AW )j ≤ 0.

Since W0 = WM = 0, we conclude from Lemma 4.1 that

V ±
j = ±Uj − (2α)−1‖AU‖∞Wj ≤ max(|U0|, |UM |)

and therefore

|Uj | ≤ max(|U0|, |UM |) + (2α)−1‖AU‖∞|Wj |,

and since

max
j
|Wj | = max

j
xj − x2

j = max
j

1/4− (xj − 1/2)2 = 1/4

the result follows with C = 1/(8α). []

The error in the finite difference solution

Theorem 4.1 (p. 45): If b = 0, then

max
j
|Uj − u(xj)| ≤ Ch2‖u‖C4 .

Proof: Let ej = Uj − u(xj). Then by Unquiz 2,

|(Ae)j | ≤ Ch2‖u‖C4 ,

so the result follows from Lemma 4.2, noting that e0 = eM = 0. []

Summary
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• The finite difference approximation to our problem leads to a system of
linear equations to be solved.

• The approximation is O(h2) = O(M−2), so the more accuracy we need in
the solution, the larger the system.

• To get approximations to the solution at points between mesh points, we
could use interpolation; see van Loan’s text for details.

Solution and error estimates using finite elements (p. 51)

Notation:
Au = −(au′)′ + cu = f in Ω = (0, 1)

with u(0) = u(1) = 0.

Assumptions:

• a(x) and c(x) smooth functions.

• a(x) ≥ α > 0, c(x) ≥ 0 in Ω̄.

• f ∈ L2(Ω).

Recall the variational formulation

a(u, v) = (f, v), v ∈ H1
0

where

a(u, v) =
∫

Ω

(au′v′ + cuv)dx

(f, v) =
∫

Ω

fvdx

As in finite differences, we choose a mesh 0 = x0 < x1 < . . . < xM = 1.

hj = xj − xj−1,

Kj = [xj−1, xj ],
h = max

j
hj .

But rather than solve for u at the mesh points, we seek an approximate solution
of a particular form:

• continuous,

• satisfying the boundary conditions,

• and piecewise linear in each of the subintervals Kj .
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We call the space of such functions Sh and note that it is a subset of H1
0 , the

space where the solution lives.

A convenient basis

We can construct our solution using any basis for Sh, but one basis is particularly
convenient: the set of hat functions φi, i = 1, . . . ,M − 1, where

φi(x) =



x−xi−1
xi−xi−1

x ∈ [xi−1, xi]

x−xi+1
xi−xi+1

x ∈ [xi, xi+1]

0 otherwise

These are designed to satisfy φi(xi) = 1 and φi(xj) = 0 if i 6= j.

Picture.

Any function v ∈ Sh can be written as

v(x) =
M−1∑
i=1

viφi(x)

where vi = v(xi).

The resulting equations

Our original problem: Find u ∈ H1
0 satisfying

a(u, v) = (f, v)

for all v ∈ H1
0 .

Our new problem: Find uh ∈ Sh satisfying

a(uh, v) = (f, v)

for all v ∈ Sh.

Because the φi form a basis, our new problem becomes: Find

uh =
M−1∑
i=1

uiφi(x)

satisfying
a(uh, φj) = (f, φj)

for j = 1, . . . ,M − 1.

Unquiz 4: Write the resulting system of equations AU = g and compare with the
answer to Unquiz 3. []

Some properties
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• This method of constructing the discrete equations is called Galerkin’s
method and is characterized by seeking uh in some subspace of the space
H1

0 that contains the solution, and making the residual a(uh, v)− (f, v)
zero on that subspace.

• A is called the stiffness matrix and g is called the load vector.

• A is symmetric (because a(φi, φj) = a(φj , φi)) and V T AV = a(v, v) > 0
when

v =
M−1∑
i=1

viφi(x) 6= 0.

Therefore, the solution exists and is unique.

• A is tridiagonal.

Error analysis

The error analysis of the finite element method proceeds in two steps:

• Step 1: Show that for every function u ∈ H1
0 , there is a function ûh ∈ Sh

that is close to it.

• Step 2: Show that the system of equations yields a solution close to ûh.

Step 1: Approximability

For any u ∈ H1
0 , let ûh ∈ Sh be defined by

Ihu ≡ ûh =
M−1∑
i=1

u(xi)φi(x).

(This is the piecewise linear interpolating function.)

A standard result in approximation theory tells us that over the interval Kj we
have

‖Ihu− u‖Kj ≤ Ch2
j |u|2,Kj ,

‖(Ihu)′ − u′‖Kj ≤ Chj |u|2,Kj .

(The proof follows from Taylor series expansions.)

(Remember notation: |u|2 = L2 norm of u′′.)

So

‖Ihu− u‖ =

M−1∑
j=1

‖Ihu− u‖2Kj

1/2

≤

M−1∑
j=1

C2h4
j |u|22,Kj

1/2

≤ Ch2‖u‖2,
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and similarly
‖(Ihu)′ − u′‖ ≤ Ch‖u‖2.

Step 2: uh is close to Ihu

We use the energy norm
‖v‖a = a(v, v)1/2.

Theorem 5.1a (p. 54):

(∗∗) ‖uh − u‖a = min
v∈Sh

‖v − u‖a

A note: Let e = u− uh. We know that a(u, v) = (f, v) and a(uh, v) = (f, v) for
all v ∈ Sh, so

(∗ ∗ ∗) a(e, v) = 0

for all v ∈ Sh. This means that the error is orthogonal to Sh, or, in other words,
uh is the orthogonal projection (with respect to the inner product a) of u onto
Sh, and therefore (∗∗) holds, as we now prove in detail.

Proof: Using (***), we see that for any v ∈ Sh,

‖e‖2a = a(e, e) = a(e, u− uh − v) ≡ a(e, u− v̂) ≤ ‖e‖a‖u− v̂‖a,

where v̂ = v + uh ∈ Sh. Therefore, ‖e‖a ≤ ‖u− v̂‖a for all v̂ ∈ Sh. []

Theorem 5.1b (p. 54):
‖u′h − u′‖ ≤ Ch‖u‖2.

Proof:
Notice that if v ∈ H1

0 , then

‖v‖2a =
∫ 1

0

a(x)(v′(x))2 + c(x)v(x)2dx

≥ min
x∈[0,1]

a(x)
∫ 1

0

(v′(x))2dx

≥ α‖v′‖2

and

‖v‖2a =
∫ 1

0

a(x)(v′(x))2 + c(x)v(x)2dx

≤ max
x∈[0,1]

a(x)
∫ 1

0

(v′(x))2dx + max
x∈[0,1]

c(x)
∫ 1

0

(v(x))2dx

≤ C‖v′‖2 + C‖v‖2

≤ C‖v′‖2,
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where the last step follows from equation (2.17). Thus,

(∗)
√

α‖v′‖ ≤ ‖v‖a ≤ C‖v′‖

for v ∈ H1
0 . Now, Theorem 5.1a implies

‖e‖a ≤ ‖z − u‖a

for all z ∈ Sh, and since z − u ∈ H1
0 , by (*) we conclude that

‖e‖a ≤ ‖z − u‖a ≤ C‖z′ − u′‖

Therefore,
‖e‖a ≤ C min

z∈Sh

‖z′ − u′‖

so, using (*) again,

‖e′‖ ≤ C‖e‖a ≤ C min
z∈Sh

‖z′ − u′‖.

Now let z = Ihu and use the interpolation bound

‖(Ihu)′ − u′‖ ≤ Ch‖u‖2.[]

This is nice, but it gives us a result on the energy norm, not the L2 norm, so we
need to work a little more.

Theorem 5.2 (p. 55):
‖e‖ ≤ Ch2‖u‖2.

Proof: We use a duality argument.

Original problem: Find u ∈ H1
0 such that a(u, φ) = (f, φ) for all φ ∈ H1

0 .

Dual problem: Find φ ∈ H1
0 such that a(w, φ) = (w, e) for all w ∈ H1

0 .

We proved that
‖φ‖1 ≤ C‖e‖,

but it is also true (see (2.22)) that

‖φ‖2 ≤ C‖e‖.

Now

(e, e) = ‖e‖2 (definition)

= a(e, φ) (a(w, φ) = (w, e))
= a(e, φ− Ihφ) (orthogonality)

≤ ‖e‖a‖(φ− Ihφ)‖a Cauchy-Schwarz

≤ C‖e′‖‖(φ− Ihφ)′‖ (*)

≤ Ch‖e′‖‖φ‖2 (approximability)

≤ Ch‖e′‖‖e‖, (previous equation)
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so ‖e‖ ≤ Ch‖e′‖, and by Theorem 5.1b, this is bounded by Ch2‖u‖2. []

Higher order approximation

We derived our finite element equation using the space of piecewise linear
functions (i.e., piecewise polynomials of degree 1) with a convenient basis, the
basis of hat functions.

We could also use higher order polynomials: quadratics, cubics, etc. The basis
we choose consists of our old hat functions plus quadratic or cubic hat functions
that vanish at all mesh points.

Picture: p. 57.

Because the approximability properties are better, we get higher order estimates
for the error: if we use piecewise polynomials of degree r − 1, then

‖u− uh‖ ≤ Chr‖u‖r,

‖u′ − u′h‖ ≤ Chr−1‖u‖r,

when u ∈ Hr.

h-p methods

Result: If we want a better approximation, we have two choices:

• decrease h.

• increase r.

The parameter r is often called p in the literature, so the resulting adaptive
methods are called h-p methods.

Summary

• We have shown existence, uniqueness, and stability of the solution to our
ODE-BVP.

• We have introduced several tools for analysis, including

– the maximum principle,

– Green’s functions,

– approximability,

– duality,

– the energy norm,

– regularity.
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• We have defined a finite difference approximation to the ODE-BVP,
reducing the problem to solving a linear system of equations.

• We showed existence and uniqueness of the finite difference approximation,
as well as an error bound.

• Omitted: We could also have applied shooting methods to solve our
ODE-BVP (660).

• We have defined a finite element approximation.

• We showed existence and uniqueness of the finite element approximation,
as well as an error bound.
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