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Solution and error estimates using finite differences (p. 43)

Note: A small part of this material is covered in 660, too.

Notation (a slight change):
Au = —au” +bu' + cu=f

with a, b, ¢ smooth and a(z) > 0, c(z) > 0 in Q.

We would like to write down an approximation to this equation that would
permit us to solve for values of u at selected points in [0, 1].

Unquiz 2: Suppose u has 4 continuous derivatives. Prove that the central
difference approximations satisfy

oy o wath) —u(z—h) 2
u'(z) = 5T + O(h?%),
o) = DB Ll tB)

for small values of h. ]

More formally,

u(z — h) — 2u(x) + u(x + h)

u//(x) i o

S Ch2|u|c4

and similarly for w'(x), where

|ules = max [u"" ()]
EAS
So the finite difference approach is to choose mesh points z; = jh, where
h = 1/M for some large integer M, and solve for u; ~ u(z;) for j =0,1,..., M.

Unquiz 3: Consider the equation
Au=—u"+bu' +u=f

where b(z) = z. Let M =5, and write the 4 finite difference equations for u at
x=.2,.4,.6, and .8. [|

Properties of the finite difference formulation:



e We obtain a system of linear equations AU = g, where g is determined by
the function f and the boundary conditions.

o Ais (M —1)x (M —1) and tridiagonal. In the jth row, the main diagonal
element is 2a;/h* + ¢; and the off-diagonal elements are
—(aj/h? £b;/(2h)). (The book's A is h? times ours.)

e For small enough h, the matrix A is row diagonally dominant: the main
diagonal element is at least as big as the sum of the absolute values of the
off-diagonal elements. This ensures that the matrix has no zero eigenvalues
and therefore a unique solution U exists.

Now we need an error estimate, which we obtain from

e a discrete maximum principle.

e a stability estimate.

A discrete maximum principle

Lemma 4.1 (p. 44): Assume h is small enough that a; + $hb; > 0 and that
AU <0.

e (i) If c=0, then

max U; = max(Up, Upr).
J

e (ii) If ¢ > 0 then
max U; < max(Up, Upm, 0).
J

Proof of (i): The jth equation (1 < j < M —1):

2a;U;/h* — (aj + hb;/2)Uj—1/h* — (aj — hb; /2)Ujs1/h* = g; < 0

SO
h? alfhbl/2 a'+hbv/2
U = —q, + -2 37777, ' ERiRces' Yy § Sy
J 2ajg]+ 2a; 1t 2a; i1
a; — hb;/2 a; + hb;/2
< 27y et B Yy § SR
- 2(lj ]+1+ 2aj i1

Suppose Uj is the maximum. Then U; = U;_; = Uj41 because the coefficients
on the right add to 1. Continuing this reasoning, we see that U is constant, so
the result holds. Therefore, either U is constant or the max occurs at an
endpoint. []

A stability estimate

We use the oo-norm of the vector U:

U = max 0.



Lemma 4.2 (p. 45): If b=10, then

1Ulloe < max(|Us|, [Un]) + Cl|AU|| oo,
where C' depends on A but not h or U.
Proof: Let w(z) =z — 22, W; = w(x;), and

a = mina(x).

TEQ

Then
(AW); = (2a; + W2c))W;/h® — ;W1 /b — ;Wi /1?

- aj(2x; — 225 — (v;—h) + (x; — h)? — (x;+h) + (z; + h)?)

h2

= Cjo + 2(1]‘

> 2.
Now let

V5 = 4U; — (20) 7Y AU|| W),

so that

(AV)5 = £(AV); — (20) AU |l (AW); < 0.

Since Wy = Wy = 0, we conclude from Lemma 4.1 that
Vji ==U; - (2a)_1||AUHOOWj < max(|Upl, |Unm|)
and therefore
|U;| < max(|Uol, |Unl) + (20) 7H|AU|oo |1,
and since

max [W;| = maxz; — 23 = max1/4 — (z; — 1/2)> = 1/4
J 7 J

the result follows with C' = 1/(8«). ]

The error in the finite difference solution

Theorem 4.1 (p. 45): If b=0, then

max |U; — u(a;)| < Ch®|lul|os.
J

Proof: Let e; = U; — u(x;). Then by Unquiz 2,
|(de);| < Ch?|lullcs,

so the result follows from Lemma 4.2, noting that eg = epy = 0. []

Summary



e The finite difference approximation to our problem leads to a system of
linear equations to be solved.

e The approximation is O(h?) = O(M~?2), so the more accuracy we need in
the solution, the larger the system.

e To get approximations to the solution at points between mesh points, we
could use interpolation; see van Loan's text for details.

Solution and error estimates using finite elements (p. 51)

Notation:
Au = —(au') +cu= fin Q=(0,1)

with «(0) = u(1) = 0.
Assumptions:

e a(x) and c¢(z) smooth functions.
e a(z) > a>0,c(x)>0in Q.
o fe Ly(N).
Recall the variational formulation
a(u,v) = (f,v), ve Hy
where

a(u,v) = /(au'v/—kcuv)da:

Q
(f,v) = fudx
Q

As in finite differences, we choose a mesh 0 =2 < 21 < ... < zp = 1.

hj = .Ij — .’Iﬁjfl,
K; = [zj1,14),
h = maxh;.
J

But rather than solve for u at the mesh points, we seek an approximate solution
of a particular form:

e continuous,

e satisfying the boundary conditions,

e and piecewise linear in each of the subintervals K.



We call the space of such functions Sj, and note that it is a subset of H{, the
space where the solution lives.

A convenient basis

We can construct our solution using any basis for Sy, but one basis is particularly

convenient: the set of hat functions ¢;, i =1,..., M — 1, where
;C:“TT: T € [Ti—1, 4]
¢i(z) = f—fﬁ T € [Ti, i1]
0 otherwise

These are designed to satisfy ¢;(x;) =1 and ¢;(z;) =0 if ¢ # j.
Picture.

Any function v € S}, can be written as

M-1

v(z) = Z v;pi ()

=1

where v; = v(a;).

The resulting equations

Our original problem: Find u € H{ satisfying

a(u,v) = (f,v)

for all v € H{.

Our new problem: Find u;, € S}, satisfying
a(uhv U) = (fv ’U)

for all v € S},.

Because the ¢; form a basis, our new problem becomes: Find

M-1

un = uii(x)

=1

satisfying
a(un, ;) = (f, ¢5)
forj=1,...,.M — 1.

Unquiz 4: Write the resulting system of equations AU = g and compare with the
answer to Unquiz 3. []

Some properties



e This method of constructing the discrete equations is called Galerkin's
method and is characterized by seeking wj, in some subspace of the space
H{ that contains the solution, and making the residual a(uy,v) — (f,)
zero on that subspace.

e A is called the stiffness matrix and g is called the load vector.

e A is symmetric (because a(¢;, ®;) = a(¢;,¢:)) and VI AV = a(v,v) > 0

when
M-1

v = Z vipi(x) # 0.
i=1
Therefore, the solution exists and is unique.

A is tridiagonal.

Error analysis

The error analysis of the finite element method proceeds in two steps:

e Step 1: Show that for every function u € H{, there is a function iy, € Sy,
that is close to it.

e Step 2: Show that the system of equations yields a solution close to y,.

Step 1: Approximability
For any u € H}, let 4y, € S}, be defined by
M—1

=14, = Z u(x;) i ().

i=1
(This is the piecewise linear interpolating function.)
A standard result in approximation theory tells us that over the interval K; we
have

2
Chj |U|2,Kj,
C’hj\u|27Kj.

(The proof follows from Taylor series expansions.)

[Mhu —ullk, <
[(Tnu) — 'l <

(Remember notation: |uly = Lo norm of u”.)

So
M—-1 1/2
[ —ul = | D IHnu—ulk,
j=1
M1 1/2
S Z Czh.;l|u|§7K7
j=1
< Ch2Hu”27



and similarly
[(Znu)" = u'[| < Chljull2.

Step 2: uy is close to Ipu

We use the energy norm
[vlla = a(v,v)"/2.
Theorem 5.1a (p. 54):

() [lun — ulla = nin o —ullq

A note: Let e = u — up. We know that a(u,v) = (f,v) and a(up,v) = (f,v) for
allv e Sy, so
(x % x) a(e,v) =0

for all v € Sy. This means that the error is orthogonal to Sy, or, in other words,
up, is the orthogonal projection (with respect to the inner product a) of u onto
Sh, and therefore (xx) holds, as we now prove in detail.

Proof: Using (***), we see that for any v € S,

lell = ale, ) = ale,u —un —v) = ale,u = ) < [lellallu— 0],

where © = v 4+ up, € Sy. Therefore, |le|ls < |lu — 0|, for all & € Sy. []

Theorem 5.1b (p. 54):
llup, = w'l| < Chllull2.

Proof:
Notice that if v € H{}, then

ol

1
/0 o) (o' (2))? + cla)o(z)?de

1
> min a(z) / (W (2))2dz
z€[0,1] 0
> afl'|?

and

vl

/0 a(x)(v'(x))? + c(x)v(x)*dx

1 1
<  max a(x)/ (v'(z))?dx + max c(x)/ (v(x))?dx
z€[0,1] 0 z€0,1] 0
< CIIP +Cloll?
< Ol



where the last step follows from equation (2.17). Thus,
() Vel < fvlla < CllY'|
forv e H&. Now, Theorem 5.1a implies
lella < Iz = ulla
for all z € Sy, and since 2 — u € H{, by (*) we conclude that

llella < llz —ulla <Ol = /||

Therefore,
< . r
lella < ¢ min 2" — 'l

so, using (*) again,

le']| < Cllella < C min [|z" — o],
z€Sh

Now let z = Ipu and use the interpolation bound

I(Tnw)" = w'|| < Chllullz-[]

This is nice, but it gives us a result on the energy norm, not the Ly norm, so we
need to work a little more.

Theorem 5.2 (p. 55):
lell < Ch?ull2.

Proof: We use a duality argument.
Original problem: Find u € H} such that a(u, ®) = (f, ¢) for all ¢ € H}.

Dual problem: Find ¢ € H{ such that a(w,¢) = (w,e) for all w € H}.

We proved that

16lls < Cllell,
but it is also true (see (2.22)) that
[8]l2 < Clle]|.
Now
(e,e) = llell? (definition)
= ale, ¢) (a(w, ¢) = (w,e))

ale, ¢ — Ing) (orthogonality)
llellall (¢ — Ind)||la  Cauchy-Schwarz
Clelli(e = Ing)' [l (%)

Chlle']l[[]2 (approximability)

Chlle|[|lell, (previous equation)

VAN VAN VAN VAN



so |le|]] < Chll€¢'||, and by Theorem 5.1b, this is bounded by C'h?|jul|2. ||

Higher order approximation

We derived our finite element equation using the space of piecewise linear
functions (i.e., piecewise polynomials of degree 1) with a convenient basis, the
basis of hat functions.

We could also use higher order polynomials: quadratics, cubics, etc. The basis
we choose consists of our old hat functions plus quadratic or cubic hat functions
that vanish at all mesh points.

Picture: p. 57.

Because the approximability properties are better, we get higher order estimates
for the error: if we use piecewise polynomials of degree  — 1, then

lu—unll < Ch"|ull,
lu' —whll < CR™Hul,,
when u € H".
h-p methods

Result: If we want a better approximation, we have two choices:
e decrease h.

e increase r.

The parameter r is often called p in the literature, so the resulting adaptive
methods are called h-p methods.

Summary

e We have shown existence, uniqueness, and stability of the solution to our
ODE-BVP.

e We have introduced several tools for analysis, including

— the maximum principle,
— Green's functions,

— approximability,

— duality,

— the energy norm,

— regularity.



We have defined a finite difference approximation to the ODE-BVP,
reducing the problem to solving a linear system of equations.

We showed existence and uniqueness of the finite difference approximation,
as well as an error bound.

Omitted: We could also have applied shooting methods to solve our
ODE-BVP (660).

We have defined a finite element approximation.

We showed existence and uniqueness of the finite element approximation,
as well as an error bound.
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