
Notes on Fast Poisson Solvers

Dianne P. O’Leary

February 23, 2010

Update of May 2, 2005 version

There is a set of very fast algorithms for solving a finite difference approxima-
tion of Laplace’s equation on a rectangle. (They also have application to some
queueing network problems and some random walks.) They are based on the
fact that the eigensystem of the resulting matrix is very simple. This set of
notes discusses one such algorithm.

Let

A =


T −I
−I T −I

. . .
. . .

. . −I
−I T


be an N ×N matrix with

T =


4 −1
−1 4 −1

. . .
. . .

. . −1
−1 4

 .

The matrix T has dimensions n × n, and let m ≡ N/n. The matrix A arises
from 2nd order finite difference discretization of the partial differential equation

−∆u ≡ −uxx − uyy = f

in a rectangular region with Dirichlet boundary conditions (i.e., values of u are
given on the boundary of the rectangle).

Eigenstructure of A

1



Let the matrix Fn be defined by

fij = αj sin
ijπ

n + 1
, i, j = 1, 2, . . . , n

where αj is chosen so that each column of Fn has norm one. Then FT
n Fn = I

and FT
n TFn = Γ ≡ diag(γ1, . . . , γn), with γj = 4− 2βj and βj = cos jπ

n+1 . Now
let

Ā =


FT

n

FT
n

.
.

.
FT

n

A


Fn

Fn

.
.

.
Fn

 =


Γ −I
−I Γ −I

. . .
. . .

. . −I
−I Γ

 .

Let P be the permutation matrix that reorders the rows of the identity matrix
as 1, n+1, 2n+1, . . . , (m−1)n+1, 2, n+2, 2n+2, . . . , (m−1)n+2, etc. Then

PĀPT =


T1

T2

.
.

.
Tn


where

Tj =


γj −1
−1 γj −1

. . .
. . .

. . −1
−1 γj


has dimension m×m. Now we can see that

FT
m

FT
m

.
.

.
FT

m




T1

T2

.
.

.
Tn




Fm

Fm

.
.

.
Fm



=


Γ1

Γ2

.
.

.
Γn

 ,

2



where Γj = diag(γj − 2β1, . . . , γj − 2βm).

Putting all this information together, we have the eigensystem of the matrix A:

UAUT = Λ

with

U =


FT

m

FT
m

.
.

.
FT

m

P


FT

n

FT
n

.
.

.
FT

n


and Λ = diag(λjk) with

λjk = 4− 2 cos
jπ

n + 1
− 2 cos

kπ

m + 1
.

Solving Linear Systems Az = b

We can now give an efficient algorithm for solving the linear system Az =
b where z = [z11, . . . , z1n, . . . zm1, . . . zmn]T . It uses the representation z =
UT Λ−1Ub . It takes advantage of the fact that multiplication by the matrix
Fp or FT

p is equivalent to a discrete Fourier transform of length p. This can be
accomplished in O(p log2 p) operations if p is a power of 2 and in some larger
but still modest number of operations if p is a composite number with many
factors. For convenience, we’ll assume that m and n are powers of 2.

Step 1: Form

b̂ =


FT

n

FT
n

.
.

.
FT

n

 b

by performing m discrete Fourier transforms

b̂k = FT
n


bk1

.

.

.
bkn

 , k = 1, . . . ,m .

Cost: O(mn log2 n).

3



Step 2: Form

c =


FT

m

FT
m

.
.

.
FT

m

 b̂permuted

by forming

cj = FT
m


b̂1j

.

.

.

b̂mj

 , j = 1, . . . , n .

Cost: O(mn log2 m).

Step 3: Form c̄ = Λ−1Ub by computing c̄kj = ckj/λkj , k =
1, . . . ,m, j = 1, . . . , n.
Cost: O(mn)

Step 4: Form

ĉ =


Fm

Fm

.
.

.
Fm

 c̄

by forming

ĉj = Fm


c̄1j

.

.

.
c̄mj

 , j = 1, . . . , n .

Cost: O(mn log2 m).

Step 5: Form

z =


Fn

Fn

.
.

.
Fn

 ĉpermuted

4



by forming

zk = Fn


ĉk1

.

.

.
ĉkn

 , k = 1, . . . ,m .

Cost: O(mn log2 n).

For further information on this method and other fast direct methods for solving
this and similar problems, see

Paul N. Swarztrauber, “The Methods of Cyclic Reduction, Fourier
Analysis, and the FACR Algorithm for the Discrete Solution of Pois-
son’s Equation on a Rectangle,” SIAM Review 19 (1977) 490-501.

5


