AMSC/CMSC 661 Quiz 9 ,  Spring 2010

1. (10) Suppose we want to solve the differential equation
up + (1 + z)uy + bu = tcos(x),

for t >0, z € (0,1), with given initial and boundary conditions. Let u be our
approximation to u(jh,nk), where k is the timestep and h = 1/m is the spatial
step. Consider the Wendroff Box Scheme finite difference method
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Given values uj, j = 0,...,m, explain how you would compute u?“, j =

0,....,m.

Answer: We would need to be given the boundary condition
up™ = u(0, (n + 1)k).

This is the relevant boundary condition, since the coefficient of u, is positive, so
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We divide through by the coefficient of u?jfll. This gives us an equation we can
evaluate for j = 0,1,...,m — 1, for a given value of n.



2. Consider the problem

ut+(1+t)u1 =0, SCE[0,00), tG(0,00),
v =2a? {re€l0,0), t=0}U{z=0, t>0}.

2a. (5) Write the differential equation that defines the characteristics for this
problem.

Answer: Using the coefficients of u; and u, on the right-hand sides, we obtain
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2b. (5) Write the solution to the problem.

Answer: This problem is the example on p. 173 of your textbook.



