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Computer Arithmetic

• What's in a word?
• Integers and arithmetic
• Floating point and arithmetic

Dianne P. O’Leary
AMSC 662 Notes
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What's in a word?

Suppose a memory location contains:

               0xc70425f20060    

 This could be an:

 Instruction: movl   $0x6000e0, …
 Character string
 Integer
 Floating point number
 Half of a double precision number
 . . .
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What's in a word?

The context tells us how to interpret the bitstring.

In these notes, we'll usually work with integers and 
floating point numbers stored in a single word (32 bits) 
of memory.  

The extension to double words (64 bits) should be clear.

And sometimes in examples we'll use very short words, 
for simplicity.
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Integer arithmetic
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Prerequisite: Binary numbers

You need to know, for example, that

     10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 
               = 1110

and

     0.10112 = 1 x 2-1 + 0 x 2-2 + 1 x 2-3 + 1 x 2-4 
                  = (11/16)10
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 Fixed Point:  2's complement 
                      Integers
Integers are stored as bitstrings in binary notation.

Positive integers:  1st bit is zero, others give the magnitude.

                                      = + 11
Negative integers: 2's complement means

                          = -21 , since 26 -21 = 101011
2
.

0 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 11 0 1 0 1 1

0 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 1
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Key idea in 2's complement:

To change the sign of an integer represented by k bits:

   Subtract it from 2k,

   Or, equivalently,

   Complement every bit and then add 1.

This makes arithmetic easy.
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 Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+_______________________

Note the “carry” here!

0 + 0  =  0
0 + 1  =  1
1 + 0  =  1

1 + 1  =  10   (binary) = 102 = 2

1 + 1 + 1 = 11 (binary)=112 = 3
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 Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+_______________________

Note the “carry” here!

In decimal notation,   3

                                +10

                                =13
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 2nd Example of binary addition

0 0 1 1 1

1 1 1 0 1

0 0 1 0 0

+_______________________

Note the “carry” here!

In decimal notation,   7

                                - 3

                                = 4

    Circuit design is easy
     with 2's complement!
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 Range of fixed point numbers    

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 = 15
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 Range of fixed point numbers      

Largest 5-digit (5 bit) binary number:

Smallest:

0 1 1 1 1 = 15
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 Range of fixed point numbers   

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 0 0 0 0 = -16

0 1 1 1 1 = 15
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 Range of fixed point numbers      

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

There is only one representation
for zero:

1 0 0 0 0 = -16

0 0 0 0 1 = 1

0 1 1 1 1 = 15

0 0 0 0 0 = 0
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 Overflow                               

If we try to add these numbers:

we get 

We call this overflow:  the answer is too large to store, 
since it is outside the range of this number system.

0 1 1 1 1 = 15

=   8

= -9.

+ 0 1 0 0 0

1 0 1 1 1
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Features of fixed point 
arithmetic

Easy: always get an integer answer.

Representation is 2’s complement (on most computers).

Either we get exactly the right answer for addition, 
subtraction, or multiplication, or we can detect overflow.

The numbers that we can store are equally spaced.

Disadvantage: very limited range of numbers.
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Floating point arithmetic
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 Floating point  arithmetic       

If we wanted to store 15 x 211  , we would need 16 bits:

Instead, let’s agree to code numbers as two fixed point 
binary numbers:

                  z  x  2     ,          with z = 15 saved as  01111
                                           and  p = 11 saved as  01011.

Now we can have fractions, too:  
 
                    binary  0.101 = 1 x 2-1  +  0 x 2-2   + 1 x 2-3  .

p

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
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 Floating point  arithmetic       

Jargon:   z  is called the mantissa or significand.   
               p is called the exponent.

                                      ± z  x 2p 

To make the representation unique (since, for example,

2 x 21  = 4 x 20 ), we normalize to make 1 ≤  z < 2 . 

We store  d  digits for the mantissa, and limit the range of the
exponent to   m ≤  p ≤  M, for some integers  m  and M.
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 Floating point representation     

Example:  Suppose we have a machine with  d = 5,  m = -15,
                                                                         M = 15.

15 x 210 = 11112 x 210  = 1.1112 x 213

                    mantissa    z = +1.1110
                    exponent    p = +1101

15 x 2-10 = 11112 x 2-10 = 1.1112 x 2-7

                    mantissa    z = +1.1110
                    exponent    p = -0111
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 Floating point  standard         

Up until the mid-1980s, each computer manufacturer had a 
different choice for  d,  m,  and M, and even a different way 
to select answers to arithmetic problems.

A program written for one machine often would not compute
 the same answers on other machines.

The situation improved somewhat with the introduction in 1987
of  IEEE standard floating point arithmetic.
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 Floating point  standard         

On most machines today,

           single precision:   d = 24,  m = -126,  M = 127

           double precision:  d = 53, m = -1022, M = 1023.

The mantissa bits store the absolute value of the
mantissa|, not the 2’s complement representation.  This
is called sign-magnitude representation.

(And gradual underflow should be allowed (but isn’t always).)
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 Sanity check

           single precision:   d = 24,  m = -126,  M = 127

 So we need 24 bits for the mantissa and 8 for the exponent
 and 1 for the sign of the mantissa.  33 bits total.

This is one too many!

But since the mantissa is always 1 followed by a fractional part,
we agree not to store the 1.
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 Floating point addition           
Machine arithmetic is more complicated for floating point.

Example:  In fixed point, we added  3 + 10.  
Here it is in floating point:

  3 =     11 (binary) = 1.100 x 21   z = 1.100,      p = 1

10 = 1010 (binary) = 1.010 x 23   z = 1.010,      p = 11.

   1.  Shift the smaller number so that the exponents are equal
                 z = 0.0110    p = 11
   2.  Add the mantissas
                 z = 0.0110 + 1.010 = 1.1010,   p = 11
   3.  Shift if necessary to normalize.
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 Roundoff in floating point  
addition                     

Sometimes we cannot store the exact answer.

Example:  1.1001 x 20 + 1.0001 x 2-1

  1.  Shift the smaller number so that the exponents are equal
                 z = 0.10001    p = 0
   2.  Add the mantissas
                  0.10001 
               + 1.1001 
             = 10.00011,   p = 0

   3.  Shift if necessary to normalize:  1.000011 x 21 

But we can only store  1.0000 x 21!  The error is called roundoff.
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Underflow, overflow….            

Convince yourself that roundoff cannot occur in fixed point.

Other floating point troubles:

      Overflow:  exponent grows too large.

      Underflow:  exponent grows too small.
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Range of floating point            

Example:  Suppose that  d = 5 and 
                 exponents range between -15 and 15.

Smallest positive normalized number:   1.0000 (binary) x 2-15

     (since mantissa needs to be normalized)

Largest positive number:     1.1111 (binary) x 215
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Rounding
IEEE standard arithmetic uses rounding as its default.

Rounding:  Store  x  as  r,  where  r  is the machine 
                   number nearest to  x.

In order to have the result of arithmetic correctly rounded
to d digits, we require up to 3 extra guard digits.

For example, 1.000 x 20 – 1.100 x 2-5  = 0.111 101 
                      (rounded)                       = 1.111 x 2-1

The hardware we studied uses 80 bits for intermediate results.
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An important number:
machine epsilon                      

Machine epsilon is defined to be gap between 1 and the
next larger number that can be represented exactly
on the machine.

Example:  Suppose that  d = 5 and 
                 exponents range between -15 and 15.

What is machine epsilon in this case?

Note: Machine epsilon depends on  d,  but does not 
depend on  m  or M!
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 Features of floating point       
                  arithmetic             
   

• The numbers that we can store are not equally 
spaced.  (Try to draw them on a number line.)

• A wide range of variably-spaced numbers can be 
represented exactly.

• For addition, subtraction, and multiplication, either 
we get exactly the right answer or a rounded version 
of it, or we can detect underflow or overflow.
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 An Important Detail:
Zero should be zero!              

 We agree to bias the exponents by adding 127, so true 
 exponents -126, -125, ..., 126, 127 map to 1, 2, ..., 253, 254. 
 

• This allows us to use the biased exponent 0 when 
representing the number 0.  Therefore, floating point zero 
has the same bit pattern as integer zero: 32 zeros.

• This helps  implementation of the CPU's zero flag.

• But note that there are two floating point zeros: 000...000 
and 100...000.
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What about other mantissas with 
a biased exponent of zero?           
   

• We can use these to store numbers too small to 
normalize.  We agree that numbers with a nonzero 
mantissa and a biased exponent of 0 will be interpreted 
as the mantissa (with a leading 0, not a 1, before the 
binary point) times 2-126.

   Example: 0.01
2
 x 2-126 .  This is stored as 

             exponent: 00000000
             mantissa: 01000000000000000000000

• This allows gradual underflow.
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        NaN and Inf             

• We haven't used the (biased) exponent 255. 

• We reserve it for special values:

• Exponent 255 and mantissa 0 means +Inf or -Inf.

• Exponent 255 and nonzero mantissa means NaN.
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Summary
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Summary
  
  -- The meaning of the content of a computer word depends 
      on context.

  -- Computers use 

 2's complement to store integers, because it makes 
 arithmetic fast.
 Sign-magnitude to store mantissas in floating point
 because adder speed is not critical
 Biased integers to store exponents in floating point,
 so that 000...000 means zero.
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