
© 2011,2013 Dianne P. O'Leary 1

Computer Arithmetic

• What's in a word?
• Integers and arithmetic
• Floating point and arithmetic

Dianne P. O’Leary
AMSC 662 Notes

© 2011,2013 Dianne P. O'Leary 2

Reference

 Michael Overton,
 Numerical Computing with IEEE Floating
 Point Arithmetic,
 SIAM Press, 2001.

© 2011,2013 Dianne P. O'Leary 3

What's in a word?

Suppose a memory location contains:

 0xc70425f20060

 This could be an:

 Instruction: movl $0x6000e0, …
 Character string
 Integer
 Floating point number
 Half of a double precision number
 . . .

© 2011,2013 Dianne P. O'Leary 4

What's in a word?

The context tells us how to interpret the bitstring.

In these notes, we'll usually work with integers and
floating point numbers stored in a single word (32 bits)
of memory.

The extension to double words (64 bits) should be clear.

And sometimes in examples we'll use very short words,
for simplicity.

© 2011,2013 Dianne P. O'Leary 5

Integer arithmetic

© 2011,2013 Dianne P. O'Leary 6

Prerequisite: Binary numbers

You need to know, for example, that

 10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20
 = 1110

and

 0.10112 = 1 x 2-1 + 0 x 2-2 + 1 x 2-3 + 1 x 2-4
 = (11/16)10

© 2011,2013 Dianne P. O'Leary 7

 Fixed Point: 2's complement
 Integers
Integers are stored as bitstrings in binary notation.

Positive integers: 1st bit is zero, others give the magnitude.

 = + 11
Negative integers: 2's complement means

 = -21 , since 26 -21 = 101011
2
.

0 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 11 0 1 0 1 1

0 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 10 0 1 0 1 1

© 2011,2013 Dianne P. O'Leary 8

Key idea in 2's complement:

To change the sign of an integer represented by k bits:

 Subtract it from 2k,

 Or, equivalently,

 Complement every bit and then add 1.

This makes arithmetic easy.

© 2011,2013 Dianne P. O'Leary 9

 Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+_______________________

Note the “carry” here!

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1

1 + 1 = 10 (binary) = 102 = 2

1 + 1 + 1 = 11 (binary)=112 = 3

© 2011,2013 Dianne P. O'Leary 10

 Example of binary addition

0 0 0 1 1

0 1 0 1 0

0 1 1 0 1

+_______________________

Note the “carry” here!

In decimal notation, 3

 +10

 =13

© 2011,2013 Dianne P. O'Leary 11

 2nd Example of binary addition

0 0 1 1 1

1 1 1 0 1

0 0 1 0 0

+_______________________

Note the “carry” here!

In decimal notation, 7

 - 3

 = 4

 Circuit design is easy
 with 2's complement!

© 2011,2013 Dianne P. O'Leary 12

 Range of fixed point numbers

Largest 5-digit (5 bit) binary number: 0 1 1 1 1 = 15

© 2011,2013 Dianne P. O'Leary 13

 Range of fixed point numbers

Largest 5-digit (5 bit) binary number:

Smallest:

0 1 1 1 1 = 15

© 2011,2013 Dianne P. O'Leary 14

 Range of fixed point numbers

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

1 0 0 0 0 = -16

0 1 1 1 1 = 15

© 2011,2013 Dianne P. O'Leary 15

 Range of fixed point numbers

Largest 5-digit (5 bit) binary number:

Smallest:

Smallest positive:

There is only one representation
for zero:

1 0 0 0 0 = -16

0 0 0 0 1 = 1

0 1 1 1 1 = 15

0 0 0 0 0 = 0

© 2011,2013 Dianne P. O'Leary 16

 Overflow

If we try to add these numbers:

we get

We call this overflow: the answer is too large to store,
since it is outside the range of this number system.

0 1 1 1 1 = 15

= 8

= -9.

+ 0 1 0 0 0

1 0 1 1 1

© 2011,2013 Dianne P. O'Leary 17

Features of fixed point
arithmetic

Easy: always get an integer answer.

Representation is 2’s complement (on most computers).

Either we get exactly the right answer for addition,
subtraction, or multiplication, or we can detect overflow.

The numbers that we can store are equally spaced.

Disadvantage: very limited range of numbers.

© 2011,2013 Dianne P. O'Leary 18

Floating point arithmetic

© 2011,2013 Dianne P. O'Leary 19

 Floating point arithmetic

If we wanted to store 15 x 211 , we would need 16 bits:

Instead, let’s agree to code numbers as two fixed point
binary numbers:

 z x 2 , with z = 15 saved as 01111
 and p = 11 saved as 01011.

Now we can have fractions, too:

 binary 0.101 = 1 x 2-1 + 0 x 2-2 + 1 x 2-3 .

p

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

© 2011,2013 Dianne P. O'Leary 20

 Floating point arithmetic

Jargon: z is called the mantissa or significand.
 p is called the exponent.

 ± z x 2p

To make the representation unique (since, for example,

2 x 21 = 4 x 20), we normalize to make 1 ≤ z < 2 .

We store d digits for the mantissa, and limit the range of the
exponent to m ≤ p ≤ M, for some integers m and M.

© 2011,2013 Dianne P. O'Leary 21

 Floating point representation

Example: Suppose we have a machine with d = 5, m = -15,
 M = 15.

15 x 210 = 11112 x 210 = 1.1112 x 213

 mantissa z = +1.1110
 exponent p = +1101

15 x 2-10 = 11112 x 2-10 = 1.1112 x 2-7

 mantissa z = +1.1110
 exponent p = -0111

© 2011,2013 Dianne P. O'Leary 22

 Floating point standard

Up until the mid-1980s, each computer manufacturer had a
different choice for d, m, and M, and even a different way
to select answers to arithmetic problems.

A program written for one machine often would not compute
 the same answers on other machines.

The situation improved somewhat with the introduction in 1987
of IEEE standard floating point arithmetic.

© 2011,2013 Dianne P. O'Leary 23

 Floating point standard

On most machines today,

 single precision: d = 24, m = -126, M = 127

 double precision: d = 53, m = -1022, M = 1023.

The mantissa bits store the absolute value of the
mantissa|, not the 2’s complement representation. This
is called sign-magnitude representation.

(And gradual underflow should be allowed (but isn’t always).)

© 2011,2013 Dianne P. O'Leary 24

 Sanity check

 single precision: d = 24, m = -126, M = 127

 So we need 24 bits for the mantissa and 8 for the exponent
 and 1 for the sign of the mantissa. 33 bits total.

This is one too many!

But since the mantissa is always 1 followed by a fractional part,
we agree not to store the 1.

© 2011,2013 Dianne P. O'Leary 25

 Floating point addition
Machine arithmetic is more complicated for floating point.

Example: In fixed point, we added 3 + 10.
Here it is in floating point:

 3 = 11 (binary) = 1.100 x 21 z = 1.100, p = 1

10 = 1010 (binary) = 1.010 x 23 z = 1.010, p = 11.

 1. Shift the smaller number so that the exponents are equal
 z = 0.0110 p = 11
 2. Add the mantissas
 z = 0.0110 + 1.010 = 1.1010, p = 11
 3. Shift if necessary to normalize.

© 2011,2013 Dianne P. O'Leary 26

 Roundoff in floating point
addition

Sometimes we cannot store the exact answer.

Example: 1.1001 x 20 + 1.0001 x 2-1

 1. Shift the smaller number so that the exponents are equal
 z = 0.10001 p = 0
 2. Add the mantissas
 0.10001
 + 1.1001
 = 10.00011, p = 0

 3. Shift if necessary to normalize: 1.000011 x 21

But we can only store 1.0000 x 21! The error is called roundoff.

© 2011,2013 Dianne P. O'Leary 27

Underflow, overflow….

Convince yourself that roundoff cannot occur in fixed point.

Other floating point troubles:

 Overflow: exponent grows too large.

 Underflow: exponent grows too small.

© 2011,2013 Dianne P. O'Leary 28

Range of floating point

Example: Suppose that d = 5 and
 exponents range between -15 and 15.

Smallest positive normalized number: 1.0000 (binary) x 2-15

 (since mantissa needs to be normalized)

Largest positive number: 1.1111 (binary) x 215

© 2011,2013 Dianne P. O'Leary 29

Rounding
IEEE standard arithmetic uses rounding as its default.

Rounding: Store x as r, where r is the machine
 number nearest to x.

In order to have the result of arithmetic correctly rounded
to d digits, we require up to 3 extra guard digits.

For example, 1.000 x 20 – 1.100 x 2-5 = 0.111 101
 (rounded) = 1.111 x 2-1

The hardware we studied uses 80 bits for intermediate results.

© 2011,2013 Dianne P. O'Leary 30

An important number:
machine epsilon

Machine epsilon is defined to be gap between 1 and the
next larger number that can be represented exactly
on the machine.

Example: Suppose that d = 5 and
 exponents range between -15 and 15.

What is machine epsilon in this case?

Note: Machine epsilon depends on d, but does not
depend on m or M!

© 2011,2013 Dianne P. O'Leary 31

 Features of floating point
 arithmetic

• The numbers that we can store are not equally
spaced. (Try to draw them on a number line.)

• A wide range of variably-spaced numbers can be
represented exactly.

• For addition, subtraction, and multiplication, either
we get exactly the right answer or a rounded version
of it, or we can detect underflow or overflow.

© 2011,2013 Dianne P. O'Leary 32

 An Important Detail:
Zero should be zero!

 We agree to bias the exponents by adding 127, so true
 exponents -126, -125, ..., 126, 127 map to 1, 2, ..., 253, 254.

• This allows us to use the biased exponent 0 when
representing the number 0. Therefore, floating point zero
has the same bit pattern as integer zero: 32 zeros.

• This helps implementation of the CPU's zero flag.

• But note that there are two floating point zeros: 000...000
and 100...000.

© 2011,2013 Dianne P. O'Leary 33

What about other mantissas with
a biased exponent of zero?

• We can use these to store numbers too small to
normalize. We agree that numbers with a nonzero
mantissa and a biased exponent of 0 will be interpreted
as the mantissa (with a leading 0, not a 1, before the
binary point) times 2-126.

 Example: 0.01
2
 x 2-126 . This is stored as

 exponent: 00000000
 mantissa: 01000000000000000000000

• This allows gradual underflow.

© 2011,2013 Dianne P. O'Leary 34

 NaN and Inf

• We haven't used the (biased) exponent 255.

• We reserve it for special values:

• Exponent 255 and mantissa 0 means +Inf or -Inf.

• Exponent 255 and nonzero mantissa means NaN.

© 2011,2013 Dianne P. O'Leary 35

Summary

© 2011,2013 Dianne P. O'Leary 36

Summary

 -- The meaning of the content of a computer word depends
 on context.

 -- Computers use

 2's complement to store integers, because it makes
 arithmetic fast.
 Sign-magnitude to store mantissas in floating point
 because adder speed is not critical
 Biased integers to store exponents in floating point,
 so that 000...000 means zero.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

