AMSC/CMSC 662 Homework 4 , Fall 2013
Due: 9:30am Thursday, October 24.

1. (10 points) Message passing programming. (At least, a special case of
it.) Write a function mpAllSolve.c that uses a master and k worker threads
with message passing.

void mpAllSolve(double (*f) (double),
double a, double b, double L, double tol,
double*x Roots, double* PossibleRoots,
int sizeRoots, int* nroots, int* npossroots,
int k)

There will be k + 1 queues of incoming messages, one for each thread. Each
message contains an integer and two doubles.

Thread 0 maintains a stack of unprocessed subintervals, initially having one
entry: (a, b, fa, fb). It also maintains a length k + 1 array of integers, 0 if
thread j is idle and 1 if thread j is busy, initialized to zeros.

It loops until the stack is empty and the threads are all idle.

At each iteration,

e It checks for incoming messages and uses them to update the stack and
the arrays of roots and possible roots.

e Then it assigns one entry in the stack (if there are any entries) to each
idle thread (if there are any idle threads). To do this, it pops a, b, fa,
fb off the stack and sends two messages with content (1, a, b) and (2,
fa, fb).

After exiting the loop, it sends a shut-down message to each thread, with the
contents (0, 0.0, 0.0), and then returns to the calling program.



Thread j (j =1,...,k) loops forever. At each iteration,

o [t waits until it receives a message.
e If it is the shut-down message, it terminates.
e Otherwise it receives a second message and processes the interval as before:

— If it has length less than tol, determine whether it contains a root
or a possible root.

— Otherwise, process the interval using the Lipschitz constant.
Return the result to thread 0 by sending:

— (3, a, b) if a root has been found.
— (4, a, b) if a possible root has been found.

— (5, a, b) if the interval is guaranteed not to contain any roots.

- (6: a, C)7
(7, fa, f£(c)),
(8’ c, b)?

(9, f(c), fb) otherwise, where ¢ = (a+b)/2.

Run your program for k € {1,2,4,8}. Report the roots and possible roots found,
the time, and the speed-up.

2. Present and discuss your results.

2a. (4) Discuss the speed-ups (slow-downs?) of this program, the Matlab pro-
gram, and the two previous C programs that you wrote, using the expensive
function provided by Tyler for Homework 3. (Use Tyler’s A11Solve codes in-
stead of yours if you wish.)

2b (4) Rerun the 4 codes using £(x) = sin(5x) on the interval [0.1,3.3] (ra-
dians) and k € {1,2,4,8}. Demonstrate that all programs compute the same
answer. Again compare the timings. In this case, overhead will show up more
clearly.

2¢ (2) Compare the 4 programs for ease of writing, speed, and load balancing.

Notes:

e Use Pacheco’s message passing programs in directory omp_msg of
http://www.cs.umd.edu/users/oleary/c662/material /PachecoCh5code.zip.
You will need to modify them (starting with queue_1k.h) to make the con-
tents of a message an integer and two doubles instead of a single integer.

e Remember to demonstrate your mastery of writing good code, writing
good documentation (including clear documentation of any changes you
make to other people’s programs), and having your program clearly label
its output.



