
AMSC/CMSC 662 Homework 5 , Fall 2013
Due: 9:30am Tuesday, November 12.

Suppose we are given some data (ti, yi), i = 0, . . . , n, and we want to construct
a polynomial p(t) of degree n so that

p(ti) = yi, i = 0, . . . , n.

This polynomial interpolation problem is considered in elementary numerical
analysis courses, and one excellent way to construct p(t) is using the Lagrange
polynomial. We express our interpolating polynomial as

pn(t) = y0L0(t) + y1L1(t) + . . . + ynLn(t), (1)

where

L`(t) =
n∏

j = 0
j 6= `

(tj − t)
(tj − t`)

.

For example, if n = 3, then

L1(t) =
(t0 − t)(t2 − t)(t3 − t)

(t0 − t1)(t2 − t1)(t3 − t1)
.

1a. (1 point) Show that each L`(t) is a polynomial of degree n.

1b. (1) Show that L`(t) has been (carefully) defined so that

L`(t`) = 1,

L`(tj) = 0, for j = 0, . . . , n but j 6= `.

1c. (1) Therefore, show that

pn(tj) = yj , j = 0, . . . , n.

1d. (2) Give the exact operations counts for evaluating pn(t) from the ex-
pressions above, calculating each L`(t) directly from its definition, without
any reordering of operations. (Give one count for floating point multiplica-
tions/divisions and a separate count for floating point additions/subtractions).

An interpolating polynomial often needs to be evaluated at a large set of points.

In the remaining problems, you will experiment with various ways to optimize
the evaluation of the Lagrange polynomial.

2a. (3) Write a C function Lagrange.c, to evaluate the Lagrange polynomial
pn (specified by coefficients y and interpolation points tj) at the k points in the
vector t. Your arguments should be float p[], float y[], float tj[],
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float t[], int n, int k, where output p stores the values of the polynomial
at the points t.

2b. (2) Look at the assembly code generated from using gcc -O0 -m32 on
Lagrange.c. (These options tell gcc to use no optimization and only the 32-bit
instruction set.) Suppose we are using the FDEMW pipeline discussed in the
B&H textbook. Given the latencies in Figure 5.12, what is the estimated CPE
(cycles-per-element) for your function?

3. (5) In this problem I am asking you to experiment with different optimization
techniques.

Write a well-documented C function Lagrange2.c that uses the Lagrange form
of the interpolating polynomial and computes the same result but runs faster
than Lagrange.c.

To do this, choose only one or two of the following optimization techniques:

• loop interchange

• loop unrolling

• multiple accumulators

• “reassociation”

Experiment a bit to find the best one or two techniques but only submit the
best. Note that I am not including “code motion”, because, for full credit, you
have written Lagrange.c well enough that this will not help.

Time your two functions for values

n = 2, 5, 8, 12, 15, 20,

k = 10, 50, 100, 150, 200, 250, 500, 750, 1000.

4. (2) Use Matlab to plot the improvement: (time for Lagrange.c - time
for Lagrange2.c) / (time for Lagrange.c). Show the 6 curves (one for each
value of n) on a single plot, with k on the horizontal axis. Label the axes (with
xlabel, ylabel) and the curves (with legend) and give the plot a descriptive
title (with title).

5. (3) Discuss your results, also mentioning less effective techniques that you
tried, and the effects of using different optimization levels for your compiler.
Make sure you specify the hardware and the compiler and compiler options
that you used. Use the same compiler options for both programs.

Data: Since multiplication times can depend on the data, let’s all work with the
same numbers. Use this (ugly and inefficient) code to initialize t, y, and tj:
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for (i=0;i<n+1;i++){
tj[i] = (float)i/57.0;
y[i] = 3.2*(float)(n-i)/(float)n;

}

for (i=0;i<k;i++){
t[i] = (float)(i+1)*(tj[n-1]-tj[0])/(float)k;

}

A reality check: It is actually a bad idea to fit high-degree polynomials to data,
because data have errors, and polynomials are very sensitive to small changes
in the data. So you might think of these polynomials as the results of a least
squares fit to a much larger set of data points. Even so, it is quite unusual to
use polynomials of degree higher than n = 6, although they are sometimes used
in numerical integration.

Submission instructions: Please keep the grader in a good mood by following
these instructions. For submission, Tyler wants 3 email attachments:

• A PDF called hmwk5.pdf, with all of the written parts and the graph.
You can make the PDF through LaTeX, export it from Word or export
it from OpenOffice, etc. But note that Tyler will not accept .doc, .docx,
and other formats.

• Attach your two files Lagrange.c and Lagrange2.c.

Tyler will time your functions on his own test problem. Especially efficient (but
accurate) programs will receive extra credit.

Thanks for being considerate of Tyler’s time by submitting in the format he
wants.
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Timing operations in C: Here is information on how to time operations in C:

/* Put this statement before main. */

#include <time.h>

/* Put these declaration statements at the beginning,
when you declare other local variables. */

clock_t starttime, endtime;
double elapsed;

/* This statement substitutes for Matlab’s tic. */

starttime = clock();

/* Do the work. When working with any timer, beware of
inaccuracies:

-- If the work takes too long (not an issue in this
assignment), the counter can roll over to zero (like
the odometer on an old car) and timing will be inaccurate.

-- If the work takes too little time, the "random" errors
in the count will be a large percentage of the measurement.

If necessary, do the work S times between the two calls
to clock, where S is chosen to make the difference in
starttime and endtime about CLOCKS_PER_SEC, and divide
elapsed by S.

*/

/* These two statements substitute for Matlab’s toc. */
endtime = clock();
elapsed = ((double) (endtime - starttime)) / CLOCKS_PER_SEC;

Reference: http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-0.02/
library_19.html#SEC310
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