Greetings

Greetings from the Information Technology Laboratory of the National
Institute of Standards and Technology in Gaithersburg, MD, USA.

The NIST/ITL Mathematical and Computational Sciences Division is
delighted to have the opportunity to co-sponsor this conference with our
Swiss colleagues. It was, of course, a US/Swiss, and indeed a NIST /ETH,
collaboration of 50 years ago, that we are celebrating here this week. We
are indeed proud of the role that our organizational ancestors in the
Institute for Numerical Analysis played in bringing to light one of the most
significant algorithms of the 20th century.

We continue to be inspired by the technical excellence and the spirit of
cooperation that characterized the seminal work of Hestenes and Stiefel on
the conjugate gradient method. The agenda for this meeting is ample
evidence that the intellectual excitement kindled by that collaboration
remains alive, and will carry us forward well into the 21st century.

Ron Boisvert
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2002: A Banner Year

e 50th Anniversary of the classic paper on the conjugate gradient (cg)
algorithm

e 60th Anniversary (- 1) of Eduard Stiefel’s habilitation degree (ETH)

e 70th Anniversary of Gene Golub's birth
70th Anniversary of Magnus Hestenes’ Ph.D. degree (University of

Chicago)

e 100th Anniversary (+ 1) of the U.S. National Bureau of Standards, now
called the National Institute of Standards and Technology, where
Magnus Hestenes worked on cg

e 150th Anniversary (- 2) of the founding of ETH Ziirich, where Eduard

Stiefel worked on cg
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The Plan

e Convergence of conjugate gradients
e Convergence of GMRES



Notation

e We solve the linear system
Ax" =0
where A € C"*" and b € C".

e \We normalize the problem so that ||b||; = 1.

e We define the residual for the linear system by
rm = b — Azl
e We denote the Krylov subspace of dimension m by

Kn(A,b) = span{b, Ab, ..., A" b} .

e We assume, without loss of generality, that our initial guess for the
solution is



Convergence of Conjugate Gradients



The Conjugate Gradient Algorithm

Hestenes and Stiefel (1952) presented the conjugate gradient algorithm in
the Journal of Research of the NBS.

Magnus Hestenes (1906-1991), a faculty member at UCLA who became
associated with the Institute for Numerical Analysis, part of NBS.

Eduard Stiefel (1909-1978), of ETH, a visitor to NBS.



Their account of how the paper came to be written

“The method of conjugate gradients was developed independently by

E. Stiefel of the Institute of Applied Mathematics at Zurich and by

M. R. Hestenes with the cooperation of J. B. Rosser, G. Forsythe, and

L. Paige of the Institute for Numerical Analysis, National Bureau of
Standards. The present account was prepared jointly by M. R. Hestenes
and E. Stiefel during the latter’s stay at the National Bureau of Standards.
The first papers on this method were given by E. Stiefel [1952] and by M.
R. Hestenes [1951]. Reports on this method were given by E. Stiefel and J.
B. Rosser at a Symposium on August 23-25, 1951. Recently, C. Lanczos
[1952] developed a closely related routine based on his earlier paper on
eigenvalue problem [1950]. Examples and numerical tests of the method
have been by R. Hayes, U. Hoschstrasser, and M. Stein.”
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Two distinct voices in the paper:

e Hestenes:

— variational theory and optimal control

— 1936: developed an algorithm for constructing conjugate bases, but
advised by a Harvard professor that it was too obvious for publication

— discouraging numerical experience by George Forsythe in using
steepest descent for solving linear systems.

e Stiefel:

— relaxation algorithms
— continued fractions

—qd algorithm
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The Scope of the 1952 Paper

Assume that A is Hermitian positive definite.

e direct method: finite termination.

@ use as iterative method: solves 106 “difference equations” in 90
iterations. (By 1958: 10x10 grid Laplace equation in 11 Chebyshev
iterations + 2 cg.)

e monotonicity properties.

e round-off error analysis.

e smoothing initial residual.

e remedy for loss of orthogonality.

e solution if A is rank deficient.

e algebraic formulation of preconditioning.

e relation to Lanczos algorithm and continued fractions.
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Recent Recognition of the Algorithm

e Science Citation Index lists over 800 citations between 1983 and 1999.

e NIST recently celebrated its centennial by picking its
100 most significant achievements. Among them:

— ASCII
— a highly-successful consumer information series
— creation of Bose-Einstein condensation
— the Conjugate Gradient Algorithm
— Lanczos’ eigenvalue algorithm
e Computing in Science and Engineering, a publication of the IEEE
Computer Society and the American Institute of Physics, named Krylov

Subspace Iteration as one of the Top 10 Algorithms of the 20th Century,
citing in particular the pioneering work of Hestenes, Stiefel, and Lanczos.
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Convergence Analysis of Conjugate Gradients

CG minimizes the error function

Ez™) = (™ — )T A(z™ — )
over the Kylov subspace KC,,(A, D).
Hayes (1954): Hilbert spaces

e linear convergence for general operators

e superlinear convergence for | + completely continuous operator.

Kaniel(1966)-Daniel(1965) theory

2m

1 — VKL
E(z™)) < 4 E(z)
R ey =

where K = A\ (A) / Amin(A).
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What is the worst case convergence for CG?

e The Kaniel-Daniel bound rests on the fact that (™ is a polynomial in
A times b, and therefore

Ez™)= min (p(A)— A DT A(p(A) — A 1.

degree(p)<m

e To provide an upper bound on E(z(™), they use scaled and shifted
versions of the Chebyshev polynomials

Tn(z) = cos(m arccos z)
in place of the minimization.

e Therefore, the worst case for conjugate gradient convergence is, for
example, the m X m diagonal matrix that has eigenvalues equal to the
roots of the scaled and shifted Chebyshev polynomials,

(2] —D)m

2m

v(. ~ 1 4+ cos
and a right hand side of ones.
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An unhappy coincidence

The eigenvalues of the 1-d Laplacian are, for large n, almost equal to these
worst-case numbers, so convergence is similarly slow.
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Conjugate Gradient Convergence

Summary:
e Good news: CG always makes some progress at each iteration.

e Bad news: The progress can be discouragingly small until the nth
iteration.
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Convergence of the GMRES Algorithm
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The GMRES Algorithm

For GMRES, we drop the assumption that A is Hermitian positive definite.
For simplicity, we'll assume that A is nonsingular.
GMRES (Saad, Schultz, 1986) minimizes the error function
() — ) AR A(z™ — 2%
over the Kylov subspace K,,(A,b).
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Convergence Analysis of GMRES

Convergence bound:

|| . . .
< Vom(AM)V 10| < k(V )1,
ol = oot VPV < w(V) min | max[pm ()

where k(1) is the condition number of the matrix of eigenvectors of A and
Pm is a polynomial of degree m.

If A is Hermitian, or, more generally, normal, then V' is an orthogonal
matrix with x(V') = 1, so the convergence analysis is related to the cg case.

In general, ill-conditioning of V' can have a negative impact on convergence.

When A is Hermitian or real symmetric, GMRES is equivalent to MINRES
and is guaranteed to make progress at each step.
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Some Clues to understanding GMRES convergence

e Any monotonically nonincreasing curve that goes to zero is the
convergence curve for GMRES applied to some problem, with arbitrary

eigenvalues. (Greenbaum, Strakos, (and Ptak) 1994, 1996).

e Convergence bounds can be derived from the field of values of a matrix

A:
[ @] = " \[c]

when the field of values of A is contained in a disk centered at ¢ with
radius s (Eiermann 1993).
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What is the worst case convergence for GMRES?

CG and MINRES are guaranteed to make progress, however minimal, at
each iteration, because the new component of the Krylov subspace is never
orthogonal to the gradient of the function minimized.

In GMRES, we do not have this nice property. In fact, examples are
well-known in which GMRES completely stagnates, failing to make any
progress for n — 1 iterations:

2O = ) = 0 — .

We want to understand stagnation better.
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Stagnation of GMRES

Joint work with Ilya Zavorin and Howard Elman.

We study an oddity: partial stagnation, in which the GMRES iterates

2O =0 = =g

If m =mn — 1, then this is complete stagnation, and then (™ will be the
exact solution to the problem.
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Characterizing Stagnation

Let the eigendecomposition of A be A = VAV ™!, and let y = V1b.
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Characterizing Partial Stagnation

Theorem: GMRES m—stagnates if and only if y satisfies the stagnation
system B

ZEYVIVY = e, (1)
where Y is the diagonal matrix formed from the entries of v,
e =[1,0,...,0/" € R™ and
1L A ... AP
D1 = 1§ i e =(e Ae ... A"e),
I A, ... A

where € is the vector of ones.
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Proof: At the mth step, GMRES minimizes the residual over all vectors x
in the span of the columns of

K, =[b, Ab, ..., A" 1]

This means that the resulting residual r,, is the projection of b onto the
subspace orthogonal to the span of the columns of AK,,.

Therefore, GMRES stagnates at step m if and only if b is orthogonal to the
columns of AK,,, or, equivalently, orthogonal to the last m columns of
NWS._L”

Kb = e
Ipsen noted that K,,.1 = VY Z,,.1, and substituting this expression gives
our stagnation system. ||
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Characterizing Complete Stagnation

If m 4+ 1 =n, then Z,,1 is invertible, and we can rewrite the stagnation

system

Complete stagnation occurs iff YV Vy =u

where u is a vector derived from the eigenvalues A;:

no A\

wy = (—1)"*eonj | T |,
k=1 v(. — v,\a
k#]
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I[lustration for n = 2

In certain simple cases, for example n = 2, we can get closed-form
expressions characterizing stagnation.

Let the eigenvalues of A be 1 and \ge®.

Then A is completely stagnating for all eigenvector matrices V' whose
condition number is greater than or equal to some critical value k.. (Ao, 8).
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A Consequence of the Characterization

Complete stagnation for a matrix A implies complete stagnation for A’':

GMRES completely stagnates for the Qov_mB Az = b if and only if it
stagnates for Az = b where b=Vy, § =Y u, and b=V 4y
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Complete Stagnation of Normal Matrices

A normal matrix A is one whose eigenvector matrix V' is unitary.
In this case, the stagnation system simplifies to
Yy=u,
which is a system of n decoupled equations of the form,
il =u;, j=1,...,n.
Therefore, for normal matrices,

e GMRES stagnates for b = Vg, where

Y = )\Sm%ﬁ 17=1,...,n,
and the phase angles 6; are arbitrary.

e If \ is such that the corresponding u contains complex or real negative
entries, then there is no right-hand side for which GMRES stagnates.
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Does Normal Stagnation Imply Non-Normal Stagnation?

Stagnation of a normal matrix does imply stagnation of an entire family of
matrices with the same eigenvalues:

Theorem: Suppose we have a vector A € C" with distinct elements such
that u € R" satisties 0 < u; < 1. Then for any nonsingular eigenvector
matrix V with W = V7V real, GMRES stagnates for A = VAV ! and
b= Vy, where y € R" satisfies YIWy = u.

Proof: If TV is real, then it is symmetric positive definite. Solving the
stagnation equation YWy = u is equivalent to finding a diagonal scaling
matrix ¥ so that YWY has row sums u. Since 0 < u; < 1, then a

theorem of Marshall and Olkin tells us that such a scaling matrix exists. |]
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Constructing Stagnating Eigenvalue Distributions

GMRES will stagnate for any eigenvector matrix satisfying V1V real, if

noA
0 <uj=(=1)""conj| II 1<
k=1 vG. — vé,
k#J
Therefore, we can study such eigenvalue distributions by solving the
polynomial system
conj | 1I (A\j — Ae) | u; = (—1)""conj I A
k=1 k=1
k) k)
for choices of u; € [0, 1].

An observation: If the elements of A solve this system, then so do the
elements of c\ for any nonzero scalar c. Therefore, every complex number
can be an eigenvalue for a completely stagnating matrix.
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Complete Stagnation for Unitary Matrices

A normal matrix A is unitary iff its eigenvalues satisfy
Nj=e% 0<¢;<2m, j=1,...,n

Nachtigal, Reddy, and Trefethen (1992) showed that GMRES can
completely stagnate when applied to a unitary matrix A with eigenvalues
distributed uniformly over the unit circle in the complex plane.

The converse can be established using the stagnation system.

Theorem: These are the only unitary matrices for which complete
stagnation can occur.
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Complete Stagnation of Real Matrices

When A is real, the stagnation system can be written as a polynomial
system in y, considerably simplifying analysis and numerical
experimentation:

YPVIVy =u

where P is a permutation matrix that depends on the ordering of
eigenvalues.

It is possible to construct real matrices A that never completely stagnate
on real right-hand sides but do completely stagnate on some complex
right-hand sides.
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Example: The matrix with eigenvectors

—0.3998204
—(.5786559
0.6984230
—0.1323115

and eigenvalues

<”

0.2414875  —0.0877858
—0.8362391  0.4920379

0.0537175  —0.7499413

0.4893898  —0.4333364

—0.4306034
0.3213318
0.5155494

—0.6674844

A = (1.0000000, —0.7658066, —0.2656295, 0.8705277).

stagnates for

@”

1.5564116 + 1.5564116 i
—1.2084570 — 0.3414864 i

0.7066397 + 1.5089330 i
—1.8679775 — 1.2644748 i |

and 15 other right-hand m.mn_mm_ none of them real.

42




Conclusions

e The convergence of conjugate gradients is quite well understood, so
attention focuses on the development of preconditioners to accelerate
convergence.

e A comprehensive understanding of the convergence of GMRES and its
relatives remains surprisingly illusive and is an additional obstacle to the
development of preconditioners.

e By studying the limiting cases — stagnation — we can gain insight into
factors that slow convergence.

e |n particular, since restarted GMRES often nearly stagnates, we hope to
develop better restart strategies.
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