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Abstract 
ESPRIT is an algorithm for determining the fixed directions of ar- 
rival of a set of narrowband signals at am array of sensors. Un- 
fortunately, its computational burden & it unsuitable for real 
time processing of signals with time-varying directions of arrival. 
In this work we develop a new implementation of ESPRIT that has 
potential for real time processing. It is based on a rank-revealing 
UFW decomposition, rather than the eigendecomposition or sin- 
gular value decomposition used in previous ESPRIT algorithms. 
We demonstrate its performance on simulated data representing 
both constant and timevarying signals. We find that the URV- 
based ESPRIT algorithm is effective for estimating timevarying 
directions-of-arrival at considerable computational savings over 
the svDbased algorithm. 

1 Introduction 
The E S P ~  algorithm [7l is a method for determining directions- 
of-arrival (DOA) of a set of narrowband signals impinging on an 
array of m sensors with translational invariance. It handles array 
geometries almost as general as those of the MUSIC algorithm [8] 
at a significant computational savings. 

A key limitation of both the MUSIC and ESPRIT algorithms is the 
work required to process a new sample. At the heart of the algo- 
rithms is the separation of the m dimensional sample space into 
a signal subspace and a noise subspace. Usually this separation 
is done by computing the eigendecomposition of the estimated co- 
variance matrix or part of the singular value decomposition of the 
data matrix. Unfortunately, these decompositions require O(m3) 
operations to update, making the algorithms unsuitable for real- 
time computation. Some attempts have been made to reduce 
the updating complexity by maintaining an approximate singu- 
lar value decomposition(e.g., [3, SI), but we believe that better 
results can be obtained using an alternate decomposition. 

Recently, Stewart [9] has introduced the rank-revealing UFW de- 
composition, a new matrix decomposition that produces the signal 
and noise subspaces, but can be updated in O(m2) time sequen- 
tially and in O(m) time on an array of m processors. This means 
that algorithms that previously depended on eigendecomposition 
or singular value decomposition may now be practical in real time 
applications, provided the URV decomposition can be successfully 
substituted. Boman, Griffin, and Stewart [l] have already ex- 
ploited this fact to accelerate the MUSIC algorithm. The purpose 
of this paper is to investigate the use of the UFW decomposition in 
time-varying signal processing using ESPRIT. 

*This work was supported in part by the Institute for Math- 
ematics and Its Applications at the University of Minnesota, 
AFOSR Grant 87-0158, and the Graduate School General Re- 
search Board of the University of Maryland. 
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2 The ESPRIT Algorithm 
Roy and Kailath [q noted that the ESPRIT idea is independent of 
the choice of matrix decompositions used in its implementation. 
In order to highlight this basic idea, in this section we describe 
ESPRIT in terms free of reference to specific decompositions. We 
hope that this description will be of independent interest. 

2.1 The background 
We consider d narrow-band plane waves simultaneously incident 
on a planar array of m sensors (m even), arranged in m/2 doublet 
pairs. The displacement between sensors in a pair is constant in 
both direction and magnitude A, but the location of each pair 
is arbitrary. The wave sources are assumed to be located in the 
same plane, and the location of each source is specified by a single 
parameter 0, E [-n,n], the DOA of the ith source. Quantities 
related to the first and second sensors in each pair are subscripted 
by 1 and 2 respectively. All vectors ace column vectors. 

Given data from the array of sensors, the DOA estimation prob- 
lem is to locate the directions of the sources. If the narrowband sig- 
nals have the same known center frequency W O ,  then the M3A prob- 
lem can be described by a simple model. The relationship between 
the unknown si$$ s ( t )  E C d  and the sensor output 11 (t) E Cm12 
and z2(t )  E Cm IS given by 

21 ( t )  = As(t)  + el ( t ) ,  (1) 
z2(t) = A@s( t )  + e z ( t ) ,  (2) 

or 

where e(t) is the measurement noise, and A E is the un- 
known matrix of array responses or array steering vectors. The 
diagonal matrix @ is also unknown, and is related to the phase 
delays between the sensors in each doublet pair: 

di = &woArinei /c ,  ; = 1 ,..., d .  (3) 

Our task is to estimate the number of signals d and the directions- 
of-arrival, &. For this it is sufficient to estimate the matrix 0,  
which is the idea underlying ESPRIT. 

2.2 ESPRIT 

To derive the ESPRIT algorithm, it is convenient to assume noise- 
free signals, so that certain subspaces are unambiguously defined. 
The ESPRIT algorithm exploits the array geometry in the following 
way. Let the n columns of 
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form an ensemble of n snapshots, and let S be the corresponding 
matrix of signals. If the d columns of 

form a basis for the column space of X , it follows from (1) and (2) 
that 

(4) 

where SB is a nonsingular matrix of order d .  
Next let the rows of 

(Wl W2) 
form a basis for the row space of (Vi V2). It follows from (4) that 
W can be written in the form 

(Wi W2) = (CASB CAOSB), 

where CA is a nonsingular matrix of order d .  Since CA and SB 
are nonsingular and 0 is diagonal, the diagonal elements of 0 are 
the eigenvalues of the pencil 

W2 - XW1 = (CA)O(SB) - X(CA)(SB). 

Given 0,  the directions of arrival can be found from (3). 
The above description of ESPRIT leads to many algorithms, even 

in the absence of noise, since there are many choices of bases. For 
example, if the bases (V," V , ) "  and (WI W2) are chosen to be 
orthonormal, then the resulting pencil is orthogonally equivalent 
to the pencil resulting from using the singular value decomposition 
to implement total lwsi squares ESPRIT (the variant studiedin this 
paper). In the presence of noise, one is faced with the additional 
problem of estimating the subspaces and their dimensions. The 
role of specific decompositions in ESPRIT algorithms is to make 
these estimations possible. 

It is worth noting that the above derivation provides an al- 
ternate interpretation of ESPRIT: namely, the problem reduces to 
choosing the matrices B and C that define the required bases. In 
particular, in the absence of noise, virtually any full rank matrices 
B and C will do (technically, any full rank matrices except those in 
a set of measure zero). Although we do not pursue this approach 
here, we feel it has the potential to yield fast algorithms that will 
work when there is a good signal-to-noise ratio. 

3 SVDESPRIT 

We now turn to the estimation of bases for the subspaces required 
by ESPRIT. In this section we consider the use of the singular value 
decomposition. We call the resulting algorithm SVD ESPRIT . 

The SVD algorithm finds unitary matrices U and V such that 

XH = U D V H ,  ( 5 )  

where the diagonal elements of D = diag(61,62, . . . , ~ 5 ~ )  are non- 
negative and in descending order of magnitude. If 6d is judged 
to be sufficiently large and 6d+i is judged to be sufficiently small ,  
then we conclude that there are d signals, and the first d columns 
of V furnish the required basis for the signal subspace. 

+ 67, approximates the s u m  of squares of 
the projection of the error onto the orthogonal complement of the 
signal subspace (i.e., onto the noise subspace). If the individual 
components of the noise have variance U', then the expected value 
of this s u m  is n(m - d)02  for rectangular windowing and approx- 
imately (m - d)u2/(1 - p2)  for exponential windowing, where p 
is the forgetting factor. Consequently, it is reasonable to choose d 

The s u m  6:+, + 

for rectangular windowing and 

for exponential windowing. Here +d > 1 is a factor chosen to make 
it unlikely that the dimension of the signal subspace is overesti- 
mated. We vary it in our experiments. 

A basis for the row space of (Vi V2) can also be determined by 
calculating a SVD. Specifically, let 

(vi v2) = T D ~ W ~  

be the SVD of (Vi V2). Then the first d rows of W H  form the 
required basis (Wl W2 ). 

Here it is necessary to say a word about the computation of the 
SVD. There exist algorithms that compute the SVD directly from 
the original matrix, and in applications with very small singular 
values where high accuracy is required they are the algorithms of 
choice. However, they are expensive, and for the DOA problem 
there are less costly alternatives. Specifically, from ( 5 ) ,  it follows 
that 

XXH = V D 2 V H .  
Thus V is the matrix of eigenvectors of the cross-product matrix 
XXH and can be computed using any of many programs to solve 
the Hermitian eigenvalue problem. This approach is particularly 
attractive, because the cross-product matrix can be easily updated 
as signals arrive. 

Even with these economies, the SVD ESPRIT algorithm is expen- 
sive, requiring the O(m3)  solution of an eigenvalue problem with 
each snapshot. Unfortunately, updating the eigendecomposition 
results in another O(m3)  algorithm, though the order constant is 
smaller [2]. Recently techniques for approximately updating an 
eigendecomposition have been proposed [3, 61 , and they show 
some promise. However, in this paper we consider an alternative 
decomposition that can be updated in O ( m 2 )  time. 

4 U R V  ESPRIT 

The rank-revealing URV decomposition expresses XH in the form 

where the columns of U and V are orthonormal, R and G are upper 
triangular of orders d and m - d ,  and F and G are smal l  in norm. 
This decomposition reveals that X is within d w  of 
the matrix X of rank d obtained by setting F and G in (6) to 
zero. The column space of X is the space spanned by the first d 
columns of V, and those columns are therefore a natural candidate 
for the basis required by the ESPRIT algorithm. The matrix U is 
unnecessary and is not stored or updated. 

In the same way, the uw decomposition of the matrix (Vi V2) 
can be used to determine the matrices W1 and W2 of the ESPRIT al- 
gorithm. We call the resultingalgorithm the UW ESPRIT algorithm. 

The uw decomposition can be updated in O(m2)  time (and in 
O ( m )  time on a linear array of m processors). The updating pro- 
cedure consists of two parts: an incorporation step and a deflation 
step. The incorporation is analogous to the standard update of a 
QR decomposition [4]; however, special care is taken that only the 
first column of F and G increases in norm. This corresponds to the 
fact that the addition of a row to a matrix can increase its rank by 
at most one. After the update, a condition estimator [SI is used to 
test R for rank degeneracy, and a deflation step reduces the norm 
of the last column of R. If a degeneracy is detected, a refinement 
step is performed to bring the decomposition closer to diagonal 
form. All transformations are accomplished by plane rotations, 
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and the algorithm is stable. We state the UW ESPRIT algorithm in 
the appendix. 

So far as rank determination is concerned, the quantity IlGll 
is the analogue of ,/- for the SVD. consequently we 
attempt to choose d so that 

for rectangular windowing and 

for exponential windowing. These criteria are applied at the de- 
flation step. 

However, during the incorporation step a decision must be made 
as to whether G has grown in norm due to an increasein rank. Here 
we use the same criterion, but with a Merent factor $,, replacing 
$d. As $,, grows, the signal subspace changes lesa frequently. 
Thus, $,, can be seen as a factor that controls the accuracy of 
the approximate signal subspace. In applications where only low 
accuracy is required, it may be t&n large with a resulting saving 
in work. An alternative of this kind is not available for the SVD. 

5 Experimental Results 
In this section, we present some simulation results that compare 
the performance of the two algorithms: sVD ESPRIT (using the 
estimated covariance matrix) and uw ESPRIT. 

We use a five-pair (m = 10) linear array with pair spacing 
X/4. The pairs are equally spaced on a line with relative locations 
[0,1,2,3,4] A. The two signals are narrow-band with signal-to- 
noise ratio (SNR) 23dB and 20dB, respectively. The noise is Gaus- 
sian, and the algorithms were tested with duplicate data samples 
in order to make a fair comparison. 

We say that an algorithm jailed at a particular time if it esti- 
mated more or fewer than two signals. 

The first example concerns two fixed signal sources located at 
24' and 29' and with 50% initial correlation. For each trial, we 
estimated the WAS based on 100 data samples, and we ran 2000 
trials. Figure 1 shows a histogram and tabular summary  of the 
results. Both algorithms were quite successful. This shows that 
we are not sacrificing much accuracy by substituting the more 
economical U W  for the SVD . 

Other experiments concerned time-varying DOAS. We used ex- 
ponential windowing, with a forgetting factor p = .9. One data 
set was used for close sources located at 

10' + 5' sin(24360) 
200 + 50 sin(2*n/240) n = 192,. * 9 719. 

This corresponds to a sampling rate of 1 data point per .1l0, .OS0, 
or .05O change in angle. Typical radar applications produce 1 
point per o change, so our experimental setup is much more 
demanding. 

Experiments varying the rank determination tolerances $d E 
{3,6} and $,, E {0,1,2} for signals of different signal-to-noise 
ratio, separation angle, and rate of change of DOA showed that 
results improved as $,, was decreased, but that the value of $d 
is more problem dependent. The error model we use accounts for 
random errors in the measurements, but not for movement of the 
sources. As the rate of change in the DOA increases, the value of 
$d must be increased in order to account for this extra source of 
error. The experiments presented here use the values $d = 3 and +,, = 1. 

Figure 2 gives the results for the close sources. The WAS were 
updated every two data samples. Both algorithms perform quite 

well, and give similar numbers of failures and average error. There 
seems to be no reason to prefer the more expensive svDbased 
algorithm over the uw , and the results indicate that in practice, 
low aampling rates can be tolerated well. Extra data could be used 
for noise reduction through averaging, feeding the time-averaged 
data to ESPRIT. 

As a h a l  example, to demonstrate tracking of htantaneously 
changing signals, we assumed that there were two signal sources 
located at 24' and 29', each with SNR 23 dB, and that the signals 
alternatively appear and disappear. We took a rectangular window 
of size 10. Figure 3 shows the similar good performauce of the two 

These experimentalresults lead us to believe that the uw-based 
ESPRIT algorithm can be successfdy used for real-time tracking of 
time-varying signals. 

algorithms. 

6 Summary 
We have presented a new variant of the ESPRIT algorithm that 
has potential for real-time tracking of moving signals. It has the 
following features: 

0 The storage requirement is O(m2) (plus mn for rectangular 
windowing). 

0 The work per update is O(m2 + d3) .  
0 Its performance is similar to svbbased algorithms, at greatly 

reduced computational cost, and it admits an efficient paral- 
lel realization. 

Appendix: The Time-Varying uav 
ESPRIT Algorithm 
Suppose that we already have a rank-revealing uw decomposi- 
tion of the data matrix from the previous time. For rectangular 
windowing, we also save the most recent n data samples. 

1) Obtain the new data sample I. 
2) Update the previous rank-revealing uw decomposi- 
tion of the matrix of data samples by downdating and 
updating the previous factors if rectangular windowing 
is used, or updating the previous factors if exponential 
windowing is used. 
3) Estimate the number of sources d (i.e., the rank of 
x) using a tolerance of $d times the expected value of 
the noise. (The parameter $d is chosen by the user.) 
4) The bads for the signal subspace (the range of XH) 
is E x ,  equal to the first d columns of the V factor in 
the uw decomposition. 
5 )  Partition Ex into m/2 x d blocks corresponding to 
the two sets of sensors: 

Ex = ( ;; ) 
and compute a rank-revealing uw decomposition of 

6 )  Partition V into d x d blocks as 

v = (  2: 2;) 
and calculate the eigenvalues &i of -&2 V2i1 (or, equiv- 
alently, the eigenvalues of VITHVg). 
7 )  Estimate the WAS from 4, using (3). 
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Figure 2: Estimated timevarying DOAs for close sources 
using exponential windowing. 
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Figure 3: Estimated timevarying DOAS for instanta- 
neously changing signals using rectangular windowing. 
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