


[1994] associates a penalty score to each node in a 
rhetorical structure tree by assigning a score of 0 to 
the root and by increasing the penalty by 1 for each 
satellite node that is found on every path from the 
root to a leaf. The dotted arcs in Figure 2 show in the 
style of Ono et al. (1994) the scope of the penalties 
that are associated with the corresponding spans. For 
example, span [4,15] has associated a penalty of 1, 
because it is one satellite away from the root. The 
penalty score of each unit, which is shown in bold 
italics, is given by the penalty score associated with 
the closest boundary. 
      The algorithm proposed by Marcu [1997,2000] 
exploits the salient units (promotion sets) associated 
with each node in a tree. By default, the salient units 
associated with the leaves are the leaves themselves. 
The salient units (promotion set) associated with each 
internal node are given by the union of the salient 
units of the children nodes that are nuclei. In Figure 
3, the salients units associated with each node are 
shown in bold.  
    As one can see, the salient units induce a partial 
ordering on the importance of the units in a text : the 
salient units found closer to the root of the tree are 
considered to be more important than the salient units 
found farther. For example, units 3, 16, and 24 which 
are the promotion units of the root, are considered the 
most important units in the text whose discourse 
structure is shown in Figure 3. Marcu [1998] has 
shown that his method yields better results than Ono 
et al.’s. Yet, when we tried it on large texts, we 
obtained disappointing results (see Section 4). 

2.2 Explanation 

Both Ono et al.’s [1994] and Marcu’s [1997, 2000] 
algorithms assume that the importance of textual 
units is determined by their distance to the root of the 
corresponding rhetorical structure tree.1 Although 
this is a reasonable assumption, it is clearly not the 
only factor that needs to be considered. 
Consider, for example, the discourse tree 

sketched out in Figure 1, in which the root node has 
three children, the first one subsuming 50 elementary 
discourse units (edus), the second one 3, and the third 
one 40. Intuitively, we would be inclined to believe 
that since the author dedicated so much text to the 
first and third topics, these are more important than 
the second topic, which was described in only 3 edus. 
Yet, the algorithms described by Ono et al. [1994] 
and Marcu [1997] are not sensitive to the size of the 
spans.  
Another shortcoming of the algorithms proposed 

by Ono et al. [1994] and Marcu [1997] is that they 
are fairly “un-localized”. In our experiments, we 

                                                      
1 The methods differ only in the way they compute 
this distance. 

have noticed that the units considered to be important 
by human judges are not uniformly distributed over 
the text. Rather, if a human judge considers a certain 
unit to be important, then it seems to be more likely 
that other units found in the neighborhood of the 
selected unit are also considered important. 
 

 
Figure 1: Example of unbalanced r hetor ical 
structure tree. 

And probably the most important deficiency, Ono 
et al.’s [1994] and Marcu’s [1997] approaches are 
insensitive to the semantics of the rhetorical 
relations. It seems reasonable to expect, for instance, 
that the satellites of EXAMPLE relations are 
considered important less frequently than the 
satellites of ELABORATION relations. Yet, none of 
the extraction algorithms proposed so far exploits this 
kind of information. 

3 Exper iment 

In order to enable the development of algorithms that 
address the shortcomings enumerated in Section 2.2, 
we took an empirical approach. That is, we manually 
annotated a corpus of 380 articles with rhetorical 
structures in the framework of Rhetorical Structure 
Theory. The leaves (edus) of the trees were clauses 
and clausal constructs. The agreement between 
annotators on the discourse annotation task was 
higher than the agreement reported by Marcu et al. 
[1999] – the kappa statistics computed over trees was 
0.72 (see Carlson et al. [2001] for details). Thirty of 
the discourse annotated texts were used in one 
summarization experiment, while  150 in another 
experiment. In all summarization experiments, recall 
and precision figures are reported at the edu level. 

3.1 Corpora used in the experiment 

Corpus A consisted of 30 articles from the Penn 
Treebank collection, totaling 27,905 words. The 
articles ranged in size from 187 to 2124 words, with 
an average length of 930 words. Each of these 
articles was paired with: 
• An informative abstract, built by a professional 
abstractor. The abstractor was instructed to 
produce an abstract that would convey the 
essential information covered in the article, in no 
more than 25% of the original length. The 
average size of the abstract was 20.3% of the 
original. 



• A short, indicative abstract of 2-3 sentences, 
built by a professional abstractor, with an 
average length totaling 6.7% of the original 
document. This abstract was written so as to 
identify the main topic of the article. 

• Two “derived extracts”, Ed1A_long and Ed2A_long, 
produced by two different analysts who were 
asked to identify the text fragments (edus) whose 
semantics was reflected in the informative 
abstracts. 

• Two “derived extracts”, Ed1A_short and Ed2A_short, 
produced by two different analysts who were 
asked to identify the text fragments (edus) whose 

semantics was reflected in the indicative 
abstracts. 

• An independent extract EA, produced from 
scratch by a third analyst, by identifying the 
important edus in the document, with no 
knowledge of the abstracts. As in the case of the 
informative abstract, the extract was to convey 
the essential information of the article in no 
more than 25% of the original length. 

 
Figure 2: Assigning impor tance to textual units using Ono et al.'s method [1994]. 



 

Figure 3: Assigning impor tance to textual units using M arcu's method [1997, 2000]. 

Corpus B consisted of 150 articles from the Penn 
Treebank collection, totaling 125,975 words. This set 
included the smaller Corpus A, and the range in size 
was the same. The average number of words per 
article was 840. Each article in this corpus was paired 
with: 
• Two informative extracts, E1B and E2B, produced 
from scratch by two analysts, by identifying the 
important edus in each document. For this 
experiment, a target number of edus was 
specified, based on the square root of the number 
of edus in each document. Analysts were 
allowed to deviate from this slightly, if necessary 
to produce a coherent extract. The average 
compression rate for these extracts was 13.30%. 

3.2 Agreement on summary annotations 

We have found that given an abstract and a text, 
humans can identify the corresponding extract, i.e., 
the important text fragments (edus) that were used to 
write the abstract, at high levels of agreement. The 
average inter-annotator recall and precision figures 
computed over the edus of the derived extracts were 
higher than 80% (see the first two rows in Table 1). 
 
Table 1: Inter -annotator  agreements on var ious 
summarization tasks. 

Agreement 
between 

Judges Rec Prec F-val 

Extracts 
derived from 
informative 
abstracts 

 
Ed1A_long -
Ed2A_long 

 
85.71 

 
83.18 

 
84.43 

Extracts 
derived from 
indicative 
abstracts 

 
Ed1A_short -
Ed2A_short 

 
84.12 

 
79.93 

 
81.97 

Extracts 
created  
from scratch  

 
E1B - E2B 

 
45.51 

 
45.58 

 
45.54 

Derived 
extracts vs. 
extracts 
created  from 
scratch  

 
Ed1A_long - 
EA 
Ed2A_long - 
EA 
 
 

 
28.15 
28.93 

 
51.34 
52.47 

 
36.36 
37.30 

 
Building an extract from scratch proved though to be 
a much more difficult task : on Corpus B, for 
example, the average inter-annotator recall and 
precision figures computed over the edus in the 
extracts created from scratch were 45.51% and 
45.58% respectively (see row 3, Table 1). This would 
seem to suggest that to enforce consistency, it is 
better to have a professional abstractor produce an 
abstract for a summary and then ask a human to 
identify the extract, i.e., the most important text 
fragments that were used to write the abstract. 
However, if one measures the agreement between the 
derived extracts and the extracts built from scratch, 



one obtains figures that are even lower than those 
that reflect the agreement between judges that build 
extracts from scratch. The inter-annotator recall and 
precision figures computed over edus of the derived 
extracts and edus of the extracts built from scratch by 
one judge were 28.15% and 51.34%, while those 
computed for the other judge were 28.93% and 
52.47% respectively (see row 4, Table 1). The 
difference between the recall and precision figures is 
explained by the fact that the extracts built from 
scratch are shorter than those derived from the 
abstract.  
    These figures show that consistently annotating 
texts for text summarization is a difficult enterprise if 
one seeks to build generic summaries. We suspect 
this is due to the complex cognitive nature of the 
tasks and the nature of the texts. 

Nature of the cognitive tasks 

Annotating texts with abstracts and extracts are 
extremely complicated cognitive tasks, each 
involving its own set of inherent challenges. 
When humans produce an abstract, they create 

new language by synthesizing elements from 
disparate parts of the document. When the analysts 
produced derived extracts from these abstracts, the 
mapping from the text in the abstracts to edus in 
documents was often one-to-many, rather than one-
to-one. As a result, the edus selected for these 
derived extracts tended to be distributed more 
broadly across the document than those selected for a 
pure extract. In spite of these difficulties, it appears 
that the intuitive notion of semantic similarity that 
analysts used in constructing the derived extracts was 
consistent enough across analysts to yield high levels 
of agreement. 

 When analysts produce  “pure extracts”, the task 
is much less well-defined.  In building a pure extract, 
not only is an analyst constrained by the exact 
wording of the document, but also, what is selected at 
any given point limits what else can be selected from 
that point forward, in a linear fashion. As a  result, 
the edus selected for the pure extracts tended to 
cluster more than those selected for the derived 
extracts. The  lower levels of agreement between 
human judges that constructed “pure extracts” show 
that the intuitive notion of “importance” is less well-
defined than the notion of semantic similarity.  

Nature of the texts 

As Table 1 shows, for the 150 documents in Corpus 
B, the inter-annotator agreement between human 
judges on the task of building extracts from scratch 
was at the 45% level. (This level of agreement is low 
compared with that reported in previous experiments 
by Marcu [1997], who observed a 71% inter-
annotator agreement between 13 human judges who 

labeled for importance five scientific texts that were, 
on average, 334 words long.) We suspect the 
following reasons explain our relatively low level of 
agreement: 
• Human judges were asked to create informative 
extracts, rather than  indicative ones. This meant 
that the number of units to be selected was larger 
than in the case of a high-level indicative 
summary. While there was general agreement on 
most of the main points, the analysts differed in 
their interpretation of what supporting 
information should be included, one tending to 
pick more general points, the other selecting 
more details. 

• The length of the documents affected the scores, 
with agreement on shorter documents greater 
overall than on longer documents. 

• The genre of the documents was a factor. 
Although these documents were all from the 
Wall Street Journal, and were generally 
expository in nature, a number of sub-genres 
were represented. 

• The average size of an edu was quite small − 8 
words/edu. At this fine level of granularity, it is 
difficult to achieve high levels of agreement. 
 
We analyzed more closely the analysts’ 

performance on creating extracts from scratch for a 
subset of this set that contained the same 30 
documents as those contained in Corpus A.  
This subset contained 10 short documents 

averaging 345 words; 10 medium documents 
averaging 832 words; and 10 long documents 
averaging 1614 words. The overall F measure for the 
short documents was 0.62; for the medium, 0.45, and 
for the long, 0.47. For the long documents, the results 
were slightly higher than the medium length ones 
because of an F score of 0.98 on one document with 
a well-defined discourse structure, consisting of a 
single introductory statement followed by a list of 
examples. For documents like these, the analysts 
were allowed to select only the introductory 
statement, rather than the pre-designated number of 
edus. Excluding this document, the agreement for 
long documents was 0.41. 
When the 30 documents were broken down by 

sub-genre, the corresponding F-scores were as 
follows (for two documents an error occurred and the 
F score was not computed): 
• simple news events, single theme (9 articles) :  
0.68 

• financial market reports and trend analysis (5 
articles) :  0.48 (excluding the one article that 
was an exception, the F measure was 0.36) 

• narrative mixed with expository  (8 articles) : 
0.47 

• complex or multiple news events, with analysis  
(3 articles) : 0.40 



• editorials/letters to the editor  (3 articles) : 0.34  
 
These scores suggest that genre does have an 

affect on how well analysts agree on what is relevant 
to an informative summary. In general, we have 
observed that the clearer the discourse structure of a 
text was, the more likely the same units were selected 
as important. 

4 Empir ical grounded algor ithms for 
discourse-based summarizers 

We estimated the utility of discourse structure for 
summarization using three classes of algorithms : one 
class of algorithms employed probabilistic methods 
specific to Hidden Markov and Bayesian Models; 
one class employed decision-tree methods; and one 
class, used as a baseline, employed the algorithm 
proposed by Marcu [1997], which we discussed in 
Section 2. All these classes were compared against a 
simple position-based summarizer, which assumes 
that the most important units in a  
text always occur at the beginning of that text; and 
against a human-based upper-bound. If we are able to 
produce a discourse-based summarization algorithm 
that agree with a gold standard as often as two human 
judges agree between themselves, that algorithm 
would be indistinguishable from a human.  

4.1 Using Hiden Markov Models for  
Discourse-Based Summarization  

In this section we present two probabilistic models 
for automatically extracting edus to generate a 
summary:  a hidden Markov model (HMM) and a 
Bayesian model. 
     The HMM for discovering edus to extract for a 
summary uses the same approach as the sentence 
extraction model discussed by Conroy and O’Leary 
[2001]. The hidden Markov chain of the model 
consists of k summary states and k+1 non-summary 
states. The chain is ‘‘hidden’’ since we do not know 
which edus are to be included in the summary.   
Figure 4 illustrates the Markov model for three such 
summary states, where the states correspond to edus. 
The Markov model is used to model the 

positional dependence of the edus that are extracted 
and the fact that if an edu in the i-th position is 
included in an extract then the prior probability to 
include in the extract the edu in the (i+1)-th position 
is higher than it would be if unit i was not included in 

the extract.  The second part of the model concerns 
the initial state distribution, which is non-zero only 
for the first summary and non-summary states.  The 
third piece of the HMM concerns the observations 
and the probabilistic mapping from states to 
observations.  For this application we chose to use 
two observations for each edu: the original height in 
the discourse tree of the edu and its final height after 
promotion, where promotion units are determined as 
discussed in Section 2.  The probabilistic mapping 
we use is a bi-variant normal model with a 2-long 
mean vector for each state in the chain and a 
common co-variance matrix. The unknown 
parameters for the model are determined by 
maximum likelihood estimation on the training data. 
The Bayesian model is quite similar to the hidden 

Markov model except that the Markov chain is 
replaced by a prior probability of an edu to be 
contained in a summary.  This prior is computed 
based on the position of each edu in a document, so 
that edus that occur in the beginning of a document 
have a higher prior probability of being included in 
an extract than edus that occur towards the end.  The 
prior probabilities for being included in a summary 
for r-1 leading edus and a prior probability for 
subsequent edus are estimated from the training data. 
The posterior probability for each edu being included 
in a summary is computed using the same bi-variant 
normal models used in the HMM. In particular, we 
have r bi-variant models corresponding to the 
quantitization of the prior probabilities.  

4.2 Using Decision Trees for Discourse-
Based Summarization 

As we discussed in Section 2.2, the important units 
are rarely chosen uniformly from all over the text. To 
account for this, we decided to devise a dynamic 
selection model. The dynamic model assumes that a 
discourse tree is traversed in a top-down fashion, 
starting from the root. At each node, the traversal 
algorithm chooses between three possible actions, 
which have the following effects : 
• Select : If the current node is a leaf, the 
corresponding text span is selected for 
summarization. 

• GoIn : If the current node is an internal node, 
then the selection algorithm is applied 
recursively on all children nodes. 

�no �no �no no
 

Figure 4: Example of summar ization specific HMM  chain. 



• GiveUp : The selection process is stopped; i.e., 
all textual units subsumed by the current node 
are considered to be unimportant. 
Assume, for example, that a text has 9 edus, the 

rhetorical structure shown in Figure 5, and assume 
that units 1, 2, 8, and 9 were labeled as  important by 
the human annotators. These units can be selected by 
the top-down traversal algorithm if starting from the 
root, the algorithm chooses at every level the actions 
shown in bold.  
 

Figure 5: The top-down, dynamic selection 
algor ithm. 
 
To learn what actions to perform in conjunction 

with each node configuration, we have experimented 
with a range of features. We obtained the best results 
when we used the following features : 

• An integer denoting the distance from the 
root of the node under scrutiny. 

• An integer denoting the distance from the 
node to the farthest leaf. 

• A boolean specifying whether the node 
under scrutiny is a leaf or not. 

• Three integers denoting the number of edus 
in the span under consideration and the 
number of edus in the sibling spans to the 
left and right of the span under 
consideration. 

• Three categorial variables denoting the 
nuclearity status of the node under scrutiny 
and the sibling nodes found immediately to 
its left and right. 

• Three categorial variables denoting the 
rhetorical labels of the node under scrutiny 
and the sibling nodes found immediately to 
the left and right. 

Using the corpora of extracts and discourse trees, 
we traversed each discourse tree top-down and 
generated automatically learning cases using the 
features and actions discussed above.  This yielded a 
total of 1600 learning cases for corpus A and a total 
of 7687 learning cases for corpus B. We used C4.5 
[Quinlan, 1993] to learn a decision tree classifier, 
which yielded an accuracy of 70.5% when cross-
validated ten-fold on corpus A and 77.0% when 
cross-validated ten-fold on corpus B. 
 
To summarize a text, a discourse tree is traversed 

top-down. At every node, the learned classifier 

decides to continue the top-down traversal (GoIn), 
abadon the traversal of all children nodes (GiveUp) 
or select the text subsumed by a given node for 
extraction (Select). 
 
 

5 Evaluation of the discourse-based 
summarizers 

To evaluate our extraction engines we applied a ten-
fold cross-validation procedure. That is, we 
partitioned the discourse and extract files into ten 
sets. We trained our summarizers 10 times on the 
files in 9 sets (27 texts for corpus A, and 135 texts for 
corpus B) and then tested the summarizers on the 
files on the remaining set (3 texts for corpus A and 
15 texts for corpus B). We compared the 
performance of our summarizers against two 
baselines : a position-based baseline, which assumes 
that  important units always occur at the beginning of 
a text, and the algorithm proposed by Marcu [1997], 
which select important units according to their 
distance from the root in the corresponding discourse 
tree.  Both baselines were given the extra advantage 
of selecting the same number of units as the humans. 
The HMM, Bayes, and Decision-based algorithms 
automatically learned from the corpus how many 
units to select. The Hidden Markov and Bayes 
models were tested only on Corpus B because 
Corpus A did not provide sufficient data for learning 
the parameters of these models.  
For Corpus A, we trained and tested our decision-

based summarization algorithm on all types of 
extracts, for all analysts : extracts derived from the 
informative abstracts, Ed1A_long and Ed2A_long, extracts 
derived from the indicative abstracts,  Ed1A_short and   
Ed2A_short, and extracts built from scratch, EA.  Table 2 
summarizes the results using traditional precision and 
recall evalutation metrics.  
 

Table 2: Evaluation results on corpus A. 

Method Rec Prec F-val 
Position-based Baseline 26.00 26.00 26.00 
Marcu’s [1997] 
selection algorithm 

34.00 33.00 33.50 

The dynamic, decision-
based algorithm  
         Ed1A_short 
         Ed1A_long 
        Ed2A_short 
         Ed2A_long 
    EA 

 
 
45.78 
79.63 
52.51 
85.61 
50.33 

 
 
25.69 
28.36 
28.72 
30.25 
30.08 

 
 
32.91 
41.82 
37.13 
44.70 
37.66 

Agreement between 
human annotators 
(extracts created from 

 
45.51 

 
45.58 

 
45.54 



scratch:  E1B - E2B) 
 
As one can see, the best results are obtained when the 
summarizer is trained on extracts derived from the 
informative abstracts.  
    Table 3 summarizes the evaluation results obtained 
on corpus B. The evaluation results in Tables 2 and 3 
show that the relation between RST trees and the 
extracts produced by the second analyst was much 
tighter than the relation between the RST trees and 
the extracts produced by the first analyst. As a 
consequence, our algorithms were in a better position 
to learn how to use discourse structures in order to 
summarize text in the style of the second analyst. In 
general, all three algorithms produced good results, 
which show that discourse structures can be used 
successfuly for text summarization even in 
conjunction with large texts and different 
summarization styles. More experiments are needed 
though in order to determine what types of extracts 
are best suited for training discourse-based 
summarizers (informative, indicative, extracts built 
from scratch, extracts derived from the abstracts, or 
extracts built according to other protocols). 
 

Table 3: Evaluation results on corpus B. 

Method Rec Prec F-val 
Position-based Baseline 30.60 30.60 30.60 
Marcu’s [1997] 
selection algorithm 

31.94 31.94 31.94 

HMM model   
   HMM vs. E1B 
    HMM vs. E2B     

    
 30.00 
 37.00 

 
30.00 
37.00 

 
29.00 
37.00 

Bayes model  
    Bayes vs. E1B 
    Bayes vs. E2B     

 
34.00 
41.00 

 
34.00 
40.00 

 
34.00 
40.00 

The dynamic, decision-
based algorithm (DDB)  
    DDB vs. E1B 
    DDB vs. E2B 

 
 
53.96 
57.66 

 
 
24.86 
34.71 

 
 
34.03 
43.43 

Agreement between 
human annotators 
(extracts created from 
scratch:  E1B - E2B) 

 
45.51 

 
45.58 

 
45.54 

6 Discussion 

This paper shows that rhetorical structure trees 
can be successfuly used in the context of 
summarization to derive extracts even for large texts. 
The learning mechanisms we have proposed here 
manage to exploit correlations between rhetorical 
constructs and elementary discourse units that are 
selected as important by human judges. In spite of 

this, we believe RST is not capable of explaining all 
our data.  
For example, RST does not differentiate between 

local and global levels of discourse. Yet, research in 
reading comprehension suggests that when people 
read, they often create a macro-structure of the 
document in their heads, in order to constrain the 
possible inferences that can be made at any given 
point (Rieger, 1975; Britton and Black, 1985). Even 
though we were able to achieve a statistically 
significant level of agreement on the discourse 
annotation task (Anonymous, 2001), we  believe that 
investigating approaches that distinguish between 
local microstrategies and global  macrostrategies 
(Meyer, 1985; Van Dijk and Kintsch, 1983) would 
help produce higher consistency in hierachical 
tagging, particularly at higher levels of the discourse 
structure, enabling us to exploit the discourse 
structure more effectively in creating text summaries.  
For example, by manually examining the 

discourse tree for a document on which two analysts 
who created pure extracts had high agreement on 
selecting the important units (F score = 0.67), it could 
be seen that both analysts selected from the same 
sub-trees, both marked with an elaboration-
additional relation. However, the rhetorical labels 
were insufficient to tell us why they chose these 
particular elaboration-additional sections over others 
that preceded or followed the ones they chose. The 
same phenomenon was observed in a number of 
other cases when comparing two different extracts 
against the corresponding discourse trees. We believe 
that an important next step in this work is to take a 
closer look at the topology of the trees, to see if there 
are macro-level generalizations that could help 
explain why certain sections get picked over others in 
the creation of extracts. 
Another important direction is to use discourse 

structure in order to increase the inter-annotator 
agreement with respect to the task of identifying the 
most important information in a text. Our 
experiments suggest that the clearer the discourse 
structure of a text is, the higher the chance of 
agreement between human annotators who identify 
important edus in a text. We suspect that if human 
judges can visualize the discourse structure of a text, 
they are able to comprehend the text at a level of 
abstraction that may not be accessible immediately 
from the text, and produce better abstracts/extracts. 
Naturally, these are hypotheses that need further 
experiments in order to be tested. 
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