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Abstract

We present a discussion of our summarization
algorithm—-both single and multi-document—along
with a discussion of the evaluation experiments we
have undertaken, what we have learned from them, and
how we intend to utilize this information.

1 Introduction

For DUC ’01, we submitted both single- and mult-
document summaries. Our single document sum-
maries were generated by two different algorithms, a
logistic regression model (LRM) and a hidden Markov
model (HMM). Document sets were randomly chosen
from each algorithm’s output to create a single sub-
mission in order to receive feedback on the two models.
Our results were reasonable, somewhere in the middle
of all the submissions, but there was certainly much
room for improvement.

Our multi-document summaries were poor. We
discovered a coding error that caused us to choose
low scoring sentences rather than high. Thus, we
were eager for DUC ’02 to assess the quality of multi-
document summaries our system was actually capable
of producing.

For DUC ’02, we have fixed all known bugs, have
made some modifications to the HMM, have merged
the LRM with the HMM, and have added some heuris-
tics to aid continuity. Additionally, we have performed
extensive evaluations of the human generated sum-
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maries, especially the multi-document summaries, to
identify ways to improve our system.

2 The Algorithms
2.1 Single Document Summaries

The two methods that we submitted last year
([CSO01]), the HMM and the LRM, were merged for
DUC 02. We accomplished this by including all the
features of the LRM ([SBDO1]) in the HMM.

An HMM has fewer assumptions of indepen-
dence than a naive Bayesian approach ([KPC95],
[AOGL97]). Specifically, we expect the probability
that the next sentence is included in the summary
will differ, depending on whether the current sentence
is a summary sentence or not, i.e., an HMM permits
this dependent probability with marginal additional
cost over a simple Bayesian classifier. Additionally,
the HMM uses a joint distribution for the features set,
unlike the assumption of independent features used by
naive Bayesian methods.

Our Hidden Markov model for text summarization
uses three features:

e position of the sentence in the document—built
into the state-structure of the HMM.

e number of tokens (non-stop words) in the
sentence—o1 (1) = log(number_of tokens + 1).

e number of “pseudo-query” terms (de-
fined below) in a sentence—os () =
log(Pr(log(number_of _pseudo — query_terms +

1))

The first feature was included explicitly in the
LRM; it is implicit in the HMM as part of the state-
space. Furthermore, the state space of the HMM
incorporates the conditional probability that a sen-
tence is a summary sentence given that the previous



sentence was a summary sentence. The second feature
was the same in both models.

The third feature requires identifying terms which
are more likely to occur in the document (or document
set) than in the corpus at large. We call such terms
“pseudo-query” terms since they replace the role of
the query terms that would be present in a query-
based summary model. We identify these terms using
the log-likelihood statistic suggested by [Dun93]. This
statistic is equivalent to a mutual information statistic
and is more robust than the Z-score we used in DUC
01. The statistic is based on a 2 by 2 contingency
table of counts for each term. See [Dun93] or [LH 00]
for details.

A fourth feature, the distance to the nearest query
term, was used by the LRM presented at DUC 01. We
found this feature to be redundant for the DUC data
since almost all sentences had at least one psuedo-
query term or were adjacent to a sentence which
contained one. Consequently, including this feature
does not improve the resulting summaries.

An adaptation to our feature set, that we made this
year, is to include a heuristic to recognize boilerplate
sentences. The above feature set is good at extracting
key sentences in the document. However, it often
chooses headlines and, on occasion, some long by-lines
that appear in the DUC data. We have developed
a number of heuristics to recognize such sentences!.
We want to make sure such sentences are not chosen
by the HMM. We do this by modifying the features
of boilerplate sentences to have features that corre-
spond to a sentence that is a non-summary sentence.
Modification of the features, in lieu of just omitting a
sentence, allows the HMM to exploit the position of
the boilerplate sentence to its fullest.

An HMM handles the positional dependence, de-
pendence of features, and Markovity. (For more de-
tails about HMMs the reader should see [BPS70] and
[Rab89].) The model we propose has 2s + 1 states,
with s summary states and s+ 1 non-summary states.
A picture of the Markov chain is given in Figure 2.1.
Note that we allow hesitation only in non-summary
states and skipping of states only from summary
states. This chain is designed to model the extraction
of up to s—1 lead summary sentences and an arbitrary
number of supporting sentences. Using training data,
we obtain a maximum-likelihood estimate for each
transition probability and this forms an estimate M
for the transition matrix for our Markov chain, where

While the performance of these heuristics is quite
good, we may occasionally misidentify a sentence, both
false positive and false negative.

& o0 oo o

Figure 1: Markov Model to Extract 2 Lead Sen-
tences and Supporting Sentences

element (i,j) of M is the estimated probability of
transitioning from state 4 to state j.

Associated with each state ¢ is an output function,
b;(O) = Pr(O|state i), where O is an observed vector
of features. We make the simplifying assumption that
the features are multivariate normal. The output
function for each state can be estimated by using
the training data to compute the maximum-likelihood
estimate of its mean and covariance matrix. We
estimate 2s + 1 means, but assume that all of the
output functions share a common covariance matrix.

With this model we compute (%), the probability
that sentence ¢ corresponds to state i. We compute
the probability that a sentence is a summary sentence
by summing (i) over all even values of i, values
corresponding to summary states. This posterior
probability, which we define as gy, is used to select the
most likely summary sentences. We refer the reader
to [CO 01] for details.

2.2 Multiple Document Summaries

Two methods for multi-document summarization
were investigated. Both methods use the HMM de-
scribed earlier (Section 2.1) to score each sentence
in the document set by posterior probability. We
then take the top-scoring sentences as candidates for
the multi-document summary. We select enough sen-
tences to generate an extract of twice the maximum
size requested, which for DUC would be 800 words.

The candidate sentences are then used to form a
token-sentence matrix, which we call A. The columns
of this matrix are normalized so that their 2-norm is
equal to the posterior probability given by the HMM.
We wish to choose columns from A which give good
coverage of the tokens. We considered two approaches
to solving this problem: pivoted QR factorization and



a SVD based method due to [GKST76]. The latter
method is known to be more robust for ill-conditioned
matrices. An ill-conditioned matrix might arise in
multi-document summarization if several sentences
which collectively have a lot of overlap were selected
for consideration by the HMM.

Pivoted QR factorization attempts to select
columns of A in the order of their importance in span-
ning the subspace spanned by all of the columns. The
standard implementation of the pivoted QR decompo-
sition is a “Gram-Schmidt” process. See [CO 01] for
details. The first r sentences (columns) selected by
the pivoted QR are used to form the summary. The
number 7 is chosen so that the summary length is close
to the target length.

The second method is similar to the QR method
and uses the same normalized matrix A. The SVD
of A (A = UXV') is then computed to determine a
rank k£ approximation. The rank is chosen so that
the difference in Frobenius norm between the original
matrix and the rank k matrix is within 1% of the
original norm. Finally a pivoted QR decomposition on
the transpose of the first k columns of V' is computed.
The first r sentences (columns) selected by the pivoted
QR are used to form the summary. The number r
is chosen so that the summary length is close to the
target length.

3 Training

Our work was set up to compare system generated
summaries to human tagged extracts which we de-
rived by having analysts map the abstracts for each
of 148 documents (half of the training data) to the
information source sentence(s) in the document. For
a human, this tended to be a straightforward task, in
contrast to our attempt at automatically generating
the mappings. The analysts were able to easily handle
abstracts containing a synthesis of information, which
were especially difficult for the automatic process.
These created extracts are the same as those we used
in DUC 01 and they were shared with the other
participants for DUC 02.

The analysts’ extracts ensured that we now had the
tagged sentences we needed for training and evaluation
purposes. The analysts chose sentences to match, as
closely as possible, the informative nature of the ab-
stracts. This enabled us to switch between informative
and indicative summaries, based on the training data
used.

The HMM was trained and tested using 119 of

the tagged documents. The remaining 29 documents
were discarded during training due to problems with
sentence boundaries as uncovered by Hans van Hal-
teren, a fellow DUC participant. These extracts were
generally longer than the required 100 word count,
since the original abstracts often drew information
from multiple sentences. The precision, as measured
by number of sentences in the extract that agreed with
the human extract, was used as a simple score. A ten-
fold cross validation was done using the 119 extracts.
The precision for the 100-word single document ex-
tracts was 0.55, which was an improvement over our
precision of 0.52 for DUC 01. This gain was due
largely to the use of the cleaner training data.

A further improvement was achieved by the boiler-
plate sentence recognition heuristics which increased
the precision to 0.57 for 100-word single document
abstracts.

We tested the multi-document summary methods
by comparing the generated summaries directly with
the human abstracts. The metric used was the cosine
score. Both the pivoted QR and the SVD subset
algorithm had comparable 0.53 and 0.52 cosine score
for 400 word summaries. This is an improvement over
our corrected QR based multi-document algorithm of
last year which had a cosine score of 0.47.

4 Generating the Final Summaries

The HMM was used to generate single document
extract summaries. Sentences were chosen by score,
with the highest scoring sentences included until the
100-word length was met or exceeded by some con-
strained amount. The selected sentences were then
reordered in their original document order to create
the final summary.

The multi-document summaries were generated by
the pivoted QR method described in the previous
section. The sentences are output in their original
document order and the document order is lexico-
graphical, which has the side effect of a temporal
order within a group of documents from the same
source (e.g. Wall Street Journal) due to the naming
convention.

After the sentences were selected for either a single
or multiple document summary , we ran another set of
heuristics which removed sentence starting discourse
markers (And, Yet, But, etc.) as well as known boil-
erplate (bracketed words, very short phrases ending in
“7” etc.). This greatly improved the cohesiveness of
the generated summaries.



5 Results

Evaluating the results to determine our perfor-
mance was, as usual, difficult. For the 200- and 400-
word extracts, we used the f-scores calculated over
the entire collection (TMEAN) as calculated by Hans
van Halteren and shown in Table 1. Details on his
calculations are available in his paper (see [vH 02]).

200 words 400 words
System | word | sentence || word | sentence
sys21 0.211 0.188 || 0.290 0.258
sys19 0.199 0.183 || 0.240 0.223
sys24 0.193 0.172 || 0.249 0.222
Sys28 0.167 0.136 || 0.241 0.197
sys20 0.144 0.126 || 0.191 0.172
sys29 0.102 0.089 || 0.179 0.156
sys31 0.094 0.082 || 0.172 0.153
sys25 0.092 0.080 || 0.165 0.148
sysl6 0.077 0.063 || 0.156 0.128
sys22 0.042 0.038 || 0.097 0.084
pbase 0.215 0.191 || 0.294 0.265

Table 1: Word- & Sentence-Based F-scores for 200-
and 400-Word Multi-Document Extracts

For the single document, 50-, 100-, and 200-word
multi-document summaries, we performed our own
calculations: precision = # of marked peer units/# of
peer units; recall = # of marked peer units/# of model
units; and f-score = (2 * precision * recall)/(precision
+ recall). Tables 2 and 3 show the relative rankings
of all the systems per our calculations. For multi-
document abstracts, rankings were determined by
summing the ranking of each system in each of the 50-
, 100-, and 200-word summaries (10-word summaries
were omitted since not all systems participated).

Overall, system performance on either extract or
abstract summarization was low. Only two systems
(sys27 and sys19) out-scored the single document sum-
mary baseline (last line, labeled “basel”) score; no
system out-scored the ezxtract multi-document base-
line (last line, labeled “pbase”) score; and only a single
system (sys19) consistently beat the abstract multi-
document baseline (last line, labeled “base3”), with
the second best system (sys26) beating it for two out
of three cases.

*basel was created by taking the first 100 white-space
delimited, non-tag tokens in the document.

3base3 created by taking the first sentence in each
consecutive document in the set until the summary length
is reached. This was the higher scoring of the two available
baselines. There was no baseline for 10-word summaries.

System | f-score
sys27 0.475
sys19 0.469
sys28 0.441
sys15 0.435
sys31 0.433
Sys29 0.432
sys21 0.430
sys23 0.408
sys18 0.368
sys25 0.368
sys16 0.363
sys31 0.148
sys17 0.138
basel? 0.466

Table 2: F-scores for Single Document Abstracts

System | 10 words | 50 words | 100 words | 200 words
sys19 0.827 0.489 0.475 0.451
sys26 0.664 0.548 0.418 0.423
sys28 — 0.439 0.423 0.384
sys24 — 0.318 0.387 0.393
sys20 0.489 0.314 0.369 0.388
sys29 0.376 0.380 0.320 0.322
sys25 0.445 0.325 0.315 0.326
sys16 0.454 0.278 0.297 0.265
base3? — 0.421 0.434 0.413

Table 3: F-scores for All Multi-Document Abstracts

Our own system (sys28) is fourth in the overall
extract rankings and third for both the single- and
multi-document overall abstract rankings. The fol-
lowing section (Section 6) discusses our investigation
of system performance within the context of human
performance and attempts to identify how we can
improve our system performance.

6 Ewvaluation

Prior to entering DUC, our evaluation methodol-
ogy was centered only on users of indicative single
document summaries. We understand this task and,
therefore, our system performs well. However, we
don’t have a good understanding of human perfor-
mance in multi-document summarization nor of our
system performance in the context of the DUC human
model. We devised our own internal evaluation using
the DUC 01 training and testing data. Our goal was to
discover from the human generated abstracts, a repli-



cable procedure for identifying the most informative
concepts across a set of documents for the purpose of
improving our system performance.

Our first investigation attempted to locate the
source/s of the information in a human abstract from
the multi-document collection. Using the SRA Tag-
Tool, an experienced analyst mapped the individual
EDUs of a 100 word multi-document human abstract
to the relevant document sentences in the multi-
document collection for 23 different DUC training sets.
Each EDU in an abstract is numbered, enabling us
to correlate individual EDUs to the corresponding
relevant document sentence/s throughout the collec-
tion. For each collection, we created a reference table
that identifies the source/s of abstract information by

gauging:

e Popularity within a document—-the frequency
with which an abstract EDU occurred in any
given document

e Breadth across the collection—the number of
documents within the collection in which the
EDU source occurred

Table 4 shows EDU distribution for data set d25.
We see there that abstract writers heavily utilized
some documents and gave others little attention. Also,
EDU sources can occur throughout the document
body. Some EDUs are source-rich (EDU-10 in the
Table) and can be traced to multiple documents.
Others are source-poor (EDUs-1, -2, and -8), and arise
from a single reference sentence within the collection.
Some EDUs (although none in this example) have no
traceable text source within the document collection.

There is no predictable abstract template or struc-
ture in evidence across the document collections. In-
formative abstracts are generated by synthesizing in-
formation from anywhere in the documents, often us-
ing background knowledge or inferences. The writers
appear to adopt a focus that is often distinct from the
focus of the document authors, and then create the
abstract with that focus. Because they are generated,
ideas can be streamlined.

As mentioned earlier, our system is effective in gen-
erating indicative single document summaries. How-
ever, our system is less effective in generating infor-
mative summaries, especially multi-document sum-
maries, even after training on informative summaries.
This is because informative summaries require a new
feature set and we have not yet identified that set.

For a 100-word multi-document summary, our sys-
tem tends to focus on a small number of the docu-
ments in the collection, routinely extracting 2-3 initial

document sentences from only 2-3 of the documents.
Rather than adopt a focus, we inherit multiple sum-
mary focuses that characterize the leads of the individ-
ual documents. Thus, our abstract EDUs tend to be
only source-rich for one or two collection documents.
For example, looking at the EDUs for the d25 multi-
document machine-generated summary, only two of
the documents contain multiple references to these
summary EDUs and only two other documents ref-
erence even one of the twelve EDUs. The remaining
documents in the set are not represented at all in the
summary EDUs. Our approach currently restricts us
to whole sentence extraction and thus includes a lot
of information baggage, averaging 2-3 sentences per
generated abstract. We have no chance of extracting
source-poor information because their document in-
formation sources do not tend to occur in the initial
sentences of the text and, perhaps more importantly,
there are no observable text clues as to why one fact
rather than any other was selected by the abstract
writer.

Our second investigation attempted to understand
what role, if any, single document summaries play
when a human creates a multi-document summary.
Here, an analyst mapped EDUs in the human-
generated 100-word summary to EDUs in the single
document summaries for five DUC 01 training sets—
d02, d16, d17, d25, and d35. In most cases, the
multi-document abstract could have been generated
from the single document summaries and the multi-
document EDUs are often source rich with references
to more than one document. However, there are
cases where the multi-document EDUs are not overtly
referenced in the single document summaries at all. In
these, the abstract writers rely on world knowledge,
use of information in a document that is not in the
single document abstract, or inferencing.

Utilizing the single document summaries may be
a replicable strategy employed by the abstract writ-
ers. Our system uses this approach. To examine its
efficacy, an analyst mapped from EDUs in the 100-
word multi-document human summary to EDUs in the
machine generated single document summaries for the
same five DUC 01 training sets as above. More than
half of the human abstract content was missing from
the machine single document summaries and thus the
quality of these single document summaries negatively
affects coverage for the system multi-document sum-
maries.

Our third investigation was to identify the impact
of increased length on abstract content. We again
analyzed the same five DUC 01 training sets and



Document EDU-1 EDU-2 EDU-3 EDU-4 EDU-5 EDU-6 EDU-7 EDU-8 EDU-9 EDU-10 EDU-11 EDU-12
LA053089-0081 0 0 0 0 0 1 2 2 6 5 0 0
LAO04i290-0125 0 0 0 0 0 0 0 0 0 0 0 0
LA092290-0175 0 0 0 0 0 0 0 0 0 0 1 0
LA111989-0125 1 1 2 2 3 0 0 0 2 2 1 5
LA112389-0104 0 0 0 0 1 0 0 0 2 2 0 0
LA113089-0118 0 0 0 0 2 0 0 0 0 0 0 0
LA121590-0056 0 0 0 0 0 1 1 0 3 2 0 0
SJMN91-06340029 0 0 0 0 0 0 0 0 0 0 1 1
‘WSJ900420-0022 0 0 0 0 0 0 0 0 0 0 0 2
‘WSJ911213-0029 0 0 0 0 0 0 0 0 0 0 2 0

Table 4: EDU Distribution for the d25 Data Set

compared coverage for three pairings of abstracts—
50-word compared to 100-word, 100-word compared
to 200-word, and 200-word compared to 400-word—
for the 5 sets. Specifically, an experienced analyst
judged whether the EDUs in the shorter abstract were
contained in the longer abstract, for each pairing. We
discovered that for some collections, even the abstract
writers were “losing” data that we assumed should be
subsumed into the longer abstract. Table 5 shows that
for data set d16, 5 of 6 EDUs in the 50-word abstract
are not subsumed in the 100-word abstract.

Document | 50-word to | 100-word to | 200-word to
Collection 100-word 200-word 400-word
d02 1/4 1/8 4722
d16 5/6 5/11 2/25
di7 0/0 0/0 2/27
d25 1/5 3/12 2/24
d3s 0/0 0/0 0/0

Table 5: EDUs Not Subsumed/Number of EDUs
in the Smaller Abstract

Our system consistently subsumes information as
the abstract length increases. High scoring sentences
are retained as the summaries expand, though sen-
tence order may change. The weights generated by
our scoring technique impose a uniformity that does
not necessarily characterize the human summaries.

We next turned to comparing the human generated
abstracts to one another. For each of 15 DUC test sets,
EDUs in each abstract of the set were compared to the
other two abstracts in the set and given a score of the
number of EDUs in the abstract that were unique, i.e.,
not contained in either of the other two abstracts in
the set, divided by the total number of EDUs in the
abstract. This gave us 45 scores. The median value
of this score was 0.60—for a typical abstract, 60% of
the EDUs are not be found in either of the other two
abstracts for the same document set. lLe., assuming
the EDUs are indicative of content, the majority of
content in one abstract is distinct from the content
in the other two abstracts. This suggests that the
content is highly influenced by the abstract writer, and

that one multi-document abstract may not provide
a representative description of the original document
set. This quantitative data underscores our contention
that the abstract writers were adopting a focus that
influenced the selection of content.

We assumed that this focus might also be evident
in the discourse structure of the abstracts. One of
the original annotators of the RST-Corpus ([CM002])
applied the RST framework and created discourse
trees for both 50-word and 100-word abstracts for
5 DUC test sets (30 total). Analysis of the set of
discourse trees for the different abstract writers for
the five DUC 01 test sets highlighted the significant
differences in content coverage. Further details of this
analysis will be presented in a future paper.

Our analysis of EDU distribution, use of single
document summaries, abstract lengthening, and the
rhetorical structure of abstracts have revealed a num-
ber of ways to enhance our system performance. Our
team plans to

e enhance the informativeness of single document
summaries by identifying and extracting new fea-
tures

e increase collection coverage by applying individ-
ual sentence pruning techniques, along the lines
of our existing heuristic, to remove discourse
markers

o identify technically feasible solutions (e.g., cre-
ation of multi-document headlines) to simulate
discourse structure

These enhancements also need to be coupled with
the development and implementation of techniques
for the abstract writers that reduce the production
of idiosyncratic abstracts.
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