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A fItrite element scheme (together with a conjugate gradient algorithmj is demonstrated to be a very effective 
method for analyzing general elastoplastic torsion of prismatic bars posed as quadratic programming problems. Solu- 
tions for bars with elliptical and Sokolovsky’s oval cross-sections are presented. The solutions for the elliptical bars 
agree with the existing elastic and limit plastic solutions at the two extremes of the elastic-plastic range. The algorithm 
also reproduces accurately the Sokolovsky solution and extends it beyond its limitations. 

Introduction 

Elastoplastic analysis is considered to be one of the most difficult topics in the theory of plas- 
ticity [ 1 I. Some fully plastic solutions can be obtained by an approximation known as limit anal- 
ysis [ 21. But in the elastic-plastic range, only a few solutions exist in the literature. Sokolovsky 
.[ 1 I constructed a solution by an inverse method which does not offer extension to other elasto- 
plastic problems. Even with such an exact solution the torque related to the solution can be ob- 
tained only by numerical integration. 

The emergence of large computers in the 1960’s steered the development of elastoplastic anal- 
ysis in a new direction. Large finite element codes have been written to compute incrementally the 
elastoplastic solutions [3-S]. Some codes provide solutions only at a tremendous computing cost. 
Some solutions are deemed unreliable because of uncontrolled round-off error accumulation after 
a huge number of floating point operations. Even with the good codes the expense sometimes 
prohibits thorough parametric analysis which requires repeated calculations of similar solutions. 

Recent advances in sparse matrix computations [6] can be employed to remedy this lack of 
efficiency. The matrices involved in the discretization of the elastoplastic field equations have a 
structured sparsity pattern. This property can be exploited to increase computational efficiency. 

The finite element method [ 71 has revolutionized the computation of elastic structure and 
continuum problems. It is certainly just as effective for approximating the elastoplastic analysis. 
Some plasticity problems arise naturally in the form of constrained variational problems. Through 
the finite element method these can generally be reduced to nonlinear programming problems [ 81. 

In particular, the elastoplastic torsion problem can be formulated as a mathematical programming 
problem with a quadratic objective function and a set of simple bounds as constraints. This qua- 
dratic programming problem has received special attention in the fields of operations research and 
computer science, and efficient algorithms are being developed [9,101. The algorithm in [91 is 
used for the solutions in this paper. 
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As examples, elliptical and Sokolovsky’s oval cross-sections are chosen for the torsion solutions 
in the elastic-plastic range. At the lower extreme of the range the computed solutions for the ellip- 
tical bars agree with the exact elastic solutions [ 111. In the upper range the solutions asymptotical- 
ly approach the limit analysis solutions [ 121. The oval solutions, valid for the entire elastic-plastic 
range, agree with the exact Sokolovsky solution in its limited range. 

1. The problem 

The elastic torsion problem is governed by the equation 

V’$=-2G8 in D, G=O on aD, (1) 

where $(x, v) is the stress function defined in the cross-section D of a prisnatic bar bounded by 
the closed curve aD, G is the shear modulus, and 8 is the angle of twist per unit length. 

The problem defined in (1) is equivalent to the variational problem of finding 4(x, u) that mini- 
mizes 

J(G) = ;$$I WI2 dA - 2GB/--@(x, y) dA 
D D 

(2) 

and satisfies the boundary condition 9 = 0. 
The value of I VI#J I at each point, representing the local magnitude of the shear stress, increases 

with G8. Physically, the material ceases to behave elastically when I V$l = ue, where u,, is the yield 
stress. An elastic perfectly plastic model that requires 

is used as a constraint to the minimization problem (2). Thus the elastoplastic torsion problem can 
be restated as: 

minimize f JJlV$l’ dA - 8JJ$ d/l , 

D D 

subject to 1041 < 1 , (4) 

J=o on f3D, 

where 8 = 2GB/o, and 4 = c$/_o,. 
It is useful to note that as 8 --f 00, the problem stated in (4) approaches the limit torsion problem: 

maximize ss $dA, cpECO ) 

D 

subject to I V$l < 1 , (5) 

$=o on aD, 
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whose solution is a surface of constant slope [ 121 such that I V&I = 1. The finite element method 
used in [ 121 exploits this property. The condition 1 V&l < 1 is equivalent to I&(x, y)l Q 
d(x, y, i3D), where d(x, y, 8D) is the shortest distance from the point (x, u) to the boundary aD 
[ 131. This distance can be obtained most conveniently by solving (5). The solution of (5) is used 
to generate the finite element mesh system given by a set of steepest descent lines. The mesh 
points, which divide each line into equal intervals, are connected to form a network. Each quadri- 
lateral mesh unit is then divided into two triangles by a diagonal. A typical mesh system is shown 
in fig. 1. Using a linear interpolation function to approximate &x, v) in each triangle, the discrete 
version of (4) takes the form of a standard quadratic programming problem 

minimize ;$‘K+ - 8cf+ ) (6) 

subject to 0 < & < di , i = 1, 2, . . . n , 

where K is a symmetric positive definite matrix, c and d are constant vectors of dimension n (the 
number of interior nodes), and Gi is the value of the unknown function 4(x, y) at the ith node. 
The lower bounds of c#+ are set at zero for the counter-clockwise torque. 

Fig. 1. A typical finite element mesh. 

2. The algorithm 

The quadratic programming problem (6) can be solved by a conjugate gradient algorithm whose 
basic framework is due to Polyak [ 141. The solution to (6) is characterized by the conditions 

gi = 0 if 0 i Gi < di - 

gi 2 0 if $ = 0 i=l,2 n, ) . . . 

g,<O if & = di 

where g = K9 - c is the gradient of J(Q). The algorithm starts from a vector $ which satisfies the 
upper and lower bounds and proceeds to decrease the quadratic function at each iteration. It ter- 
minates with the optimal solution after a finite number of iterations. 
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The algorithm does not modify the matrix K and needs to access it only through a subroutine 
which forms the product of K with any given vector p. Since the matrix is sparse, this is a very in- 
expensive operation. 

The algorithm can be accelerated through the use of a positive definite matrix M which has the 
properties that the ratio if the maximum and minimum eigenvalues of Mm1 K is smaller than the 
ratio for K, and the system of equations &@ = g is easy to solve for any given vector g. It is possible 
to take M equal to the identity matrix, but a choice of M equal to the diagonal of K is sometimes 
more effective. Other choices of M are discussed in [ 91. 

The algorithm is as follows: 
Given: an initial vector satisfying o & 4 < d, a matrix M, the initial gradient g = K+ - c, and a 

prescribed tolerance E, perform: 

Outer iteration: 
1. Set ‘-1 if &GE and gi > 0 

Sif’ 1 if & 2 di - E and gi < 0 

. 0 otherwise I i= 1,2,...n. 

2. Ifs has not changed from the previous iteration, terminate with the solution #. 
3. Set Fi + gi if si=O 

I 
i = 1, 2, . . . n , 

gi + O otherwise 

and set g + -jj and k+ 1. 
4. Begin the inner iteration. 

Inner iteration: 
1. If all components of g corresponding to zero components of s are less than E in absolute value, 

then start the next outer iteration. 
2. Calculate a step length: 

3. Update the solution and gradient: 
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4. If (Y # (Ymax ) then proceed with step 5. Otherwise, some variable has reached a bound. Set 

-1 if f#+.<e 

I 
i=l,2,...n, 

si + 1 if q!+ > di - E 

0 otherwise. 

If all components of s are nonzero, then start the next outer iteration. Otherwise, set k + 1. 
5. Prepare for the next iteration; set 

ii + C”-‘g)i if si = 0 

I 
i= 1,2,...n. 

gi f 0 otherwise 

If k= 1 thenp + -S, else /3 + g’g/r (7 was computed at the previous iteration), and p + -3 + pp. 

Then update y + g’g. 
Set k + k + 1 and start the next inner iteration. 

A more complete explanation of the algorithm and proof of its convergence is given in [ 91. It is 
advantageous to use the algorithm to find a solution with a large e and then refine E and restart it. 
This reduces the number of inner iterations. The algorithm can be implemented in less than 100 
Fortran statements, plus separate subroutines for forming Kp and M-‘g. Notice that components 
of p and $ corresponding to nonzero components of s do not change in the inner iterations; this 
should be exploited in the coding. 

3. Elliptical shaft 

The first quadrant of an ellipse with major and minor semiaxes a and b is shown in fig. 1. The 
finite element mesh is shown as the network constructed from the steepest descent lines obtained 
in 1121. The value of d(x, y, aD> at each mesh point can be easily calculated along the steepest 
descent line passing through the point. 

With the conjugate gradient algorithm it is most convenient to start the iteration from a large 
value of 8 which corresponds to a nearly limit plastic solution. By decreasing 8, elastoplastic solu- 
tions with decreasing plastic zone are computed. The solution for a new 8 is obtained using the 
solution for the previous 8 as the initial iterate. For a fixed precision the number of iterations 
taken to converge to a new solution depends on the magnitude of change from the initial iterate. 
Thus it is natural to take large steps in e on the flat part of the torque vs. angle of twist curve and 
small steps on the steep part. Changing 8 slowly to produce more information may not necessarily 
incur higher computing cost. A desirable rate of decreasing $ can be determined by experiment 
during computation. 

When 8 is decreased to the value corresponding to the maximum elastic torque, the entire 
domain will become elastic (IV@ I < 1). Below this value the solution varies linearly with 8. There 
is no need to carry the computation further. 
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Fig. 2. Torque-angle of twist curves of elliptical shafts. 

The integral 2 JJD$(x, y) dA gives the torque whose dimensionless form r/(o,,a3) is plotted 
against i 8a for various b/a ratios in fig. 2. The dotted curve separates the linear elastic solution 
region from the elastoplastic region. As 8 + 00, the solutions approach the limit plastic ones. The 
curve for b/u = 1 is the well-known solution for a circular shaft. 

4. Sokolovsky oval 

The exact solution given by Sokolovsky for an oval cross-section D with major and minor semi- 
axes A and B and an elliptical elastic core D, = {(x, y): (x/u)* + (y/b)* G 1) is given by (see [ 11) 

&x,y) = - &I 
a+b (x2 +Y*) in Q?, 

aij/ay = -sin $ , a&x = -cos $I in D-D,, (8) 

where $ is a parameter related to a point on the elastic-plastic interface. The solution is constructed 
inversely from an initial elliptical elastic core D, to produce the shape of the oval. The solution is 
valid only if A d 2B. 

Although the solution is exact, integration of #(x, y) over the oval domain needs to be carried 
out numerically. The restriction A Q 2B is quite artificial. It only states that no elastoplastic solu- 
tion with an elliptical core exists when A >. 2B. There exists a solution in another form. 

The solutions for two ovals (B/A = 0.6, B/A = 0.4) are computed by the present algorithm. The 
Sokolovsky solution is accurately reproduced as a part of the complete elastoplastic numerical solu- 
tion for B/A = 0.6. For B/A = 0.4 the Sokolovsky method does not apply. But the solution exists 
and is shown in fig. 3. 
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Fig. 3. Torqueangle of twist curves of Sokolovsky oval shafts. 

5. Discussion and conclusions 

The mesh chosen for the quarter-domains has 22 steepest descent lines and 20 unknowns on 
each line. The algebraic systems have approximately 400 variables. By the standards of most 
elastoplastic codes these are large problems. However, the computing time for each curve in figs. 
2 and 3 is only 23 seconds CPU time on an Amdahl470. More detailed information on the perfor- 
mance of the conjugate gradient algorithm is given in [9]. We conclude that the use of this algo- 
rithm in conjunction with the special mesh technique discussed in this paper presents a more effi- 
cient procedure for elastoplastic analysis compared with earlier work [ 1 S] . 

The finite element approximation used in this paper has 0(h2) error [ 71, where h is the largest 
mesh size. For the mesh density chosen the solution $I and the torque are accurate to three digits. 
The tolerance, E on the components of the gradient vector is taken to be lo-‘. 

As discussed earlier, the change of 8 at each step depends on the amount of information sought. 
The most economical way is to change 8 by an amount that does not require excessive iterations 
to reach the next solution. This can be achieved by monitoring the number of inner and outer 
iterations as well as the slope of the torque vs. angle of twist curve at each step during computation. 

One of the interesting and important features of elastoplastic analysis is its ability to predict 
states of residue stresses after a local or global unloading [ 161. Although not presented, the method 
in this paper can be extended to include this aspect and will be presented in a future article. 

Plasticity is a field in which the types of nonlinearities lend themselves naturally to computation- 
al approaches. Modern numerical methods seem to be the only way to unlock many unsolved prob- 
lems in the field. 
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