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Capacitance Matrix Methods for the

Helmholtz Equation on General

Three-Dimensional Regions

By Dianne P. O'Leary* and Olof Widlund**

Abstract. Capacitance matrix methods provide techniques for extending the use of fast

Poisson solvers to arbitrary bounded regions. These techniques are further studied and

developed with a focus on the three-dimensional case.  A discrete analogue of classical

potential theory is used as a guide in the design of rapidly convergent iterative methods.

Algorithmic and programming aspects of the methods are also explored in detail. Several

conjugate gradient methods are discussed for the solution of the capacitance matrix equa-

tion. A fast Poisson solver is developed which is numerically very stable even for indefi-

nite Helmholtz equations.  Variants thereof allow substantial savings in primary storage

for problems on very fine meshes.  Numerical results show that accurate solutions can be

obtained at a cost which is proportional to that of the fast Helmholtz solver in use.

1.   Introduction.   It is well known that highly structured systems of linear alge-

braic equations arise when Helmholtz's equation

(1.1) -Au + cu = f,      c = constant,

is discretized by finite difference or finite element methods using uniform meshes.

This is true, in particular, for problems on a region Í2 which permits the separation of

the variables.  Very fast and highly accurate numerical methods are now readily avail-

able to solve separable problems at an expense which is comparable to that of a few

steps of any simple iterative procedure applied to the linear system; see Bank and Rose

[2], [3], Buneman [5], Buzbee, Golub and Nielson [8], Fischer, Golub, Hald, Leiva

and Widlund [16], Hockney [24], [26], Swarztrauber [50], [51], Swarztrauber and

Sweet [52], [53] and Sweet [54].   Adopting common usage, we shall refer to such

methods as fast Poisson solvers.

The usefulness of these algorithms has been extended in recent years to problems

on general bounded regions by the development of capacitance matrix, or imbedding,

methods; see Buzbee and Dorr [6], Buzbee, Dorr, George and Golub [7], George [19],

Hockney [25], [27], Martin [35], Polozhii [40], Proskurowski [41], [42], [43],

Proskurowski and Widlund [44], [45], Shieh [46], [47], [48] and Widlund [57]. We

refer to Proskurowski and Widlund [44] for a discussion of this development up to the

Received October 20, 1978.

AMS iMOS) subject classifications (1970).   Primary 65F10, 65N20.

*The work of this author was supported in part by a National Science Foundation Grant

MCS 76-06595 at the University of Michigan.

**The work of this author was supported by ERDA, Contract No. EY-76-C-02-3077.

© 1979 American Mathematical Society

0025-571 8/79/0000-0100/S08.75

849



850 DIANNE P. O'LEARY AND OLOF WIDLUND

beginning of 1976.  All of the numerical experiments reported in those papers were

carried out for regions in the plane.  Strong results on the efficiency of certain of

these methods have been rigorously established through the excellent work of Shieh

[46], [47], [48].  Algorithms similar to those which we shall describe have recently

been implemented very successfully for two-dimensional regions by Proskurowski [42],

[43] and Proskurowski and Widlund [45].  In that work, a new fast Poisson solver,

developed by Banegas [1], has been used extensively; see Section 5.  We note that the

performance of computer programs implementing capacitance matrix algorithms de-

pends very heavily on the efficiency of the fast Poisson solver, and if properly designed,

they can be easily upgraded by replacing that module when a better one becomes avail-

able.

In this paper, we shall extend the capacitance matrix method to problems in

three dimensions.  The mathematical framework, using discrete dipole layers in the

Dirichlet case, is an extension of the formal discrete potential theory developed in

Proskurowski and Widlund [44]. We note that these algorithms must be quite differ-

ently designed in the three-dimensional case.  As in two dimensions the fast Poisson

calculations strongly dominate the work.  The number of these calculations necessary

to meet a given tolerance remains virtually unchanged when the mesh size is refined.

We have developed a FORTRAN program for Cartesian coordinates and the Dirichlet

problem, which turns out to be technically more demanding than the Neumann case.

This program has been designed to keep storage requirements low.  The number of

storage locations required is one or two times TV, the number of mesh points in a rec-

tangular parallelepiped in which the region is imbedded, plus a modest multiple of p,

the number of mesh points which belong to the region Ü, and are adjacent to its

boundary.  A further substantial reduction of storage can be accomplished for very

large problems by using the ideas of Banegas [1] ; see further Section 5.

In the second section, we discuss the imbedding idea. Following a review of classi-

cal potential theory, we derive our capacitance matrix methods in Section 3.   Section 4

focuses on algorithmic aspects which are of crucial importance in the development of

fast, reliable and modular computer code.  We solve the capacitance matrix equations

by conjugate gradient methods.  These methods, originally used in a similar context by

George [19], are reviewed in that section.  We also discuss how spectral information

and approximate inverses of the capacitance matrices can be obtained and used at a

moderate cost in computer time and storage.  The fast Poisson solver which is used in

our program is described in Section 5.  It is numerically stable even for negative values

of the coefficient c of the Helmholtz operator.  Finally, we give details on the organi-

zation of our computer program and results from numerical experiments.  These tests

were designed to be quite severe, and the method has proved efficient and reliable.

Our program has been checked by the CDC ANSI FORTRAN verifier at the

Courant Mathematics and Computing Laboratory of New York University.  It has been

run successfully on the CDC 6600 and the DEC 11/780 VAX at the Courant Institute,

a CDC 7600 at the Lawrence Berkeley Laboratory and the Amdahl 470V/6 at the Uni-

versity of Michigan.
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2.   Discrete Helmholtz Problems and Imbedding.

2.1.   The Imbedding of the Discrete Problem.   In this section, we shall discuss

how discretizations of the problem

-Au + cu = f    on £2,

with a boundary condition and data given on 9£2, can be imbedded in problems for

which fast Poisson solvers can be used.  In the second subsection, we describe in detail

how these ideas apply to the finite difference scheme which we have used in our nu-

merical experiments.

The efficiency of capacitance matrix methods depends on the choice of appro-

priate finite difference and finite element meshes.  Interior parts of the mesh should be

made regular in the sense that the linear equations at the corresponding mesh points

match those of a fast Poisson solver. We denote the set of these mesh points by £2ft

where h is a mesh width parameter.  The set of the remaining, irregular mesh points is

denoted by 9£2ft.  These points are typically located on or close to the boundary 9£2

and the discrete equations associated with them are computed from local information

on the geometry of the region.   For efficiency, the number of unknowns associated

with the points in 9£2ft should be kept small, since the equations and other informa-

tion required at the regular mesh points are inexpensive to generate and can be stored

in a very compact form.

If we work in Cartesian coordinates it is natural to imbed our open, bounded re-

gion £2 in a rectangular parallelepiped and to use a rectangular mesh.  Other choices

which permit the separation of the variables on the larger region, can equally well be

chosen.  On the larger region a mesh suitable for a fast Poisson solver is introduced

which coincides with the regular part of the mesh previously introduced for the region

£2.  The position of the larger region relative to £2 is largely arbitrary but when using

discrete dipoles (see Section 3), we need a layer of exterior mesh points, one mesh

width thick, outside of £2ft U 9£2,,.  We shall use some or all of the discrete equations

at exterior mesh points to expand our original linear system into one which is of the

same size as the one which is solved by the fast Poisson solver.  The set of mesh points

corresponding to these equations is denoted by CSlh.

Before we describe how these larger systems of equations are derived, we shall

show by two examples how these sets of mesh points can be constructed.  We first

consider a Dirichlet problem solved by a classical finite difference scheme on a rectan-

gular mesh.  The values of the approximate solution are sought at the mesh points

which belong to £2.  The discretization of the Helmholtz operator on the larger region

induces, for each mesh point, a neighborhood of points used by its stencil.  A mesh

point in £2 belongs to £2ft if and only if all its relevant stencil neighbors are in £2, and

9£2ft is the set of the remaining mesh points in £2.  The set C£2ft is the set of all mesh

points which belong to the complement of £2.   It, thus, includes any mesh point which

is on the boundary 9£2.

As a second example, consider a Neumann problem for Laplace's equation in two

dimensions solved by a finite element method with piecewise linear trial functions. The
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region is approximated by a union of triangles using a regular triangulation, based on a

uniform mesh, in the interior of the region.  The set £2ft will then correspond to the

set of equations which are not affected by the particular geometry of the region.  Val-

ues of the discrete solution are also sought at the vertices on the boundary.  These

points normally fail to lie on a regular mesh.  They belong to 9£2ft together with cer-

tain mesh points which are close to the boundary.  Each irregular point can be assigned

to a close-by mesh point of the regular mesh which covers the larger region; and we

then define C£2ft as the set of remaining, exterior mesh points.  There are a number of

permissible ways in which this assignment can be made.  Similar constructions can be

carried out for higher order accurate finite element methods; see Proskurowski and

Widlund [45] for further details.

Let us write the expanded linear system in the form

(2.1) Au = b,

where u is the vector of values of the discrete solution at the mesh points and the com-

ponents of b are constructed from the function / and the data given on 9£2.   By con-

struction, our formulas for the interior and irregular mesh points do not involve any

coupling to exterior mesh points, and the matrix is therefore reducible, i.e. there exists

a permutation matrix P such that

PTAP =

Axx       0

-^21      ^22/

The block matrix Axx represents the approximation of the problem on £2A U 9£2/l.   It

is clear from the structure of this system that the restriction of the solution of the sys-

tem (2.1) to this set is independent of the solution and the data at the exterior points.

Our methods also produce values of a mesh function for the points of C£2ft but they

are largely arbitrary and useless.  Similarly, we must provide some extension of the

data to the set C£2ft, but the performance of the algorithms is only marginally affected

by this choice.

Let B denote the matrix representation of the operator obtained by using the

basic discretization at all the mesh points.  Only those rows of A and B which corre-

spond to the irregular mesh points differ provided the equations and unknowns are

ordered in the same way.  We can, therefore, write

A=B+ UZT,

where U and Z have p columns, with p equal to the number of elements of the set

9£2ft.   It is convenient to choose the columns of U to be unit vectors in the direction

of the positive coordinate axes corresponding to the points of 9£2ft.  The operator U is

then an extension operator which maps any mesh function, defined only on 9£2/2, onto

a function defined on all mesh points.  The values on 9£2ft are retained while all the re-

maining values are set equal to zero.  The transpose of U, UT, is a restriction, or trace,

operator which maps any mesh function defined everywhere onto its restriction to 9£2ft.

The matrix ZT can, with this choice of U, be regarded as a compact representation of
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A - B, obtained by deleting the zero rows corresponding to the equations for the mesh

points in £2^ U C£2h.   It is important to note that Z and U are quite sparse, a reflec-

tion of the sparsity of A and B.

In Sections 3 and 4, we shall discuss efficient and stable ways of solving the lin-

ear system (2.1).

2.2.  The Shortley-Weller Scheme.   We shall now discuss the finite difference

scheme which has been used in our numerical experiments to solve the Dirichlet prob-

lem and also describe how the necessary information on the geometry of the boundary

is handled.

The second order accurate Shortley-Weller formula (see Collatz [9, Chapter 5.1]

or Forsythe and Wasow [17, Section 20.7]) can be understood as the sum of three

point difference approximations for the second derivative with respect to each of the

three independent variables.  The value at the nearest mesh neighbor in each positive

and negative coordinate direction is used unless this neighbor belongs to the set C£2ft.

In that case the Dirichlet data at the point of intersection of the mesh line and the

boundary is used.

As an example, suppose that the mesh spacings in the x,y and z directions are

all equal to h.  Consider an irregular mesh point, with indices (z, /, k), which has two

exterior neighbors in the x direction and one in the positive y direction.   Let 8_x, 8+x

and S+   be the distances to the boundary, in the respective coordinate directions, mea-

sured in units of the mesh size h; and let g_x,g+x and g+   he the Dirichlet data at the

corresponding points on the boundary 9£2.  Then our approximation to -Au + cu = f

at this irregular point is

i2liS+x8_x) + 2/8+y + 2 + ch2)uijk-i2/il + 8+y))uUj_x>k -u¡¡>k+x -uij¡k_x

= »%k + <2/(«+, + Kx*-x))g+x + (2/(S2x +8+x8_x))g_x

+ i2li82+y + 8+y))g+y.

At the regular points the formula reduces to a simple seven point approximation.

The Shortley-Weller formula has a matrix of positive type.  This permits the use

of the classical error estimates based on a discrete maximum principle, as in the refer-

ences given above.  The only information required on the geometry of the region is the

coordinates of the irregular mesh points and the distances along the mesh lines from

each such point to the boundary.  This appears to be close to the minimum informa-

tion required by any method with more than first order accuracy.  See Proskurowski

and Widlund [44], Pereyra, Proskurowski and Widlund [39] and Strang and Fix [49]

for more details.  This geometrical information is also sufficient to construct higher or-

der accurate approximations to the Helmholtz equation, as in Pereyra, Proskurowski

and Widlund [39] where a family of methods suggested by Kreiss is developed.  These

methods have proven quite effective for two-dimensional problems but their usefulness

is limited by the requirement that each irregular mesh point must have several interior

mesh neighbors along each mesh line.  This requirement is met by shifting the region

and refining the mesh if necessary.  Although this is practical in two dimensions, it is
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much more difficult for three-dimensional regions.

We are free to scale the rows of the matrix A which correspond to the irregular

mesh points.  The choice of scaling is important since it affects the rate of convergence

of our iterative method.  Based on the analysis given in the next section, the experience

in the two-dimensional case (see Proskurowski and Widlund [44] ) and our numerical

experiments, we have chosen to make all diagonal elements of A equal to one.

3.  Potential Theory and Discrete Dipoles.

3.1.   The Continuous Case.   In this section, we shall give a brief survey of certain

results of classical potential theory and also develop an analogous, formal theory for the

discrete case.  We shall mainly follow the presentation of Garabedian [18] when discus-

sing the continuous case, specializing to the case of c = 0. A discrete, formal theory

has previously been developed by Proskurowski and Widlund [44] but our presentation

in subsections 3.2—3.4 will be more complete in several respects.

We first introduce the volume, or Newton, potential

(3.1) uvix) = il/4ir)   f    fiDlrdi,

where x = ixx,x2, x3), % = (%x,%2, £3) and

r - iixx - U2 + ix2 - £2)2 + (*3 - h??'2-

We note that (l/4ff)(l/r) is a fundamental solution of the operator -A, i.e.,

-Auv=f.

A single layer potential, with a charge density p, is given by

(3.2) !/(*) = (1/2*) Janp(8/r da

and a double layer potential, with a dipole moment density p, by

(3-3) W(x) = (l/2ff) Jan KDO/g^Xl/r) do.

Here v denotes the normal of the boundary 9£2 directed towards the interior of £2. By

U+ and [/", we denote the limits of 1/ when the boundary is approached from the

outside and inside, respectively, and similar notations are also used for the limits of W.

The functions 1/ and W are real analytic functions in the complement of 9£2.   By using

a Green's formula one can establish that 1/ and diti/dv are continuous and that jump

conditions hold for 9l//9y and W; see Garabedian [18, Chapter 9].  Thus, for a region

with a smooth boundary,

V + = {/-,

dV^/dv = (+)p + (1/2jt)   fan p(b/bvx)(l/r) do,

W<T> = (±)p + (l/2ir) Jan p(9/9^)(l/r) do,

dW+Zô-v = dür/dv.

With the aid of these relations the Neumann and Dirichlet problems can be reduced to
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Fredholm integral equations.  For the interior Neumann problem,

-Au = f        in £2,

bu/bv = gN on 9£2,

we make the Ansatz,

u(x) = uv(x) + U(x).

The boundary condition is satisfied by choosing p such that

b\J~/bv =-p + (1/2jt)   f     p(b/dvx)(l/r)do
(3.4) 9n

= gy-i^v)Uy\ba =g.

This equation can be written as (/ - K )p = -'g, where K is a compact operator defined

by the formula above.  It is a Fredholm integral equation of the second kind with a

simple zero eigenvalue.  Since K is compact in L2 the integral operator / — A" is bound-

ed in L2 and it has an inverse of the same form on a space of codimension one. Equa-

tion (3.4) is solvable if ~g is orthogonal to the left eigenfunction of (/ -A') correspond-

ing to the zero eigenvalue.  In this case this simply means that g should have a zero

mean value.  By using the same Ansatz for the exterior Neumann problem, we obtain

an integral equation with the operator I + K.

If we use the same single layer Ansatz for the interior Dirichlet problem, with

data gD, we get an integral equation of the first kind,

(1/2?r)  S0ciplrda = gD~uv\an-

This operator does not have a bounded inverse in L2.  The use of an analogous Ansatz

for the discrete Dirichlet problem gives rise to capacitance matrices which become in-

creasingly ill-conditioned as the mesh is refined.

The Ansatz
uix) = Uyix) + Wix),

which employs a double layer potential, leads to a Fredholm integral equation of the

second kind,

ÖT = p. + (1/2*)   f     p(9/9iO(l/r) do
J Oil s

(3.5)
= gD -"FW

The integral operator is now I + KT, where KT is the transpose of the operator intro-

duced when solving the Neumann problems.  We shall obtain well-conditioned capaci-

tance matrices when using a discrete analogue of this approach.

The close relationship between the integral equations for the interior Dirichlet

and exterior Neumann problems is used to establish the solvability of the Dirichlet

problem; see Garabedian [18, Chapter 10].  A similar argument is given in subsection

3.3 for a discrete case.

The integral operator Ä' is not symmetric except for very special regions. Never-

theless, it has real eigenvalues; see, e.g. Kellogg [32, p. 309]. For future reference, we

also note that there exist variational formulations of the Fredholm integral equations
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given in this section; see Nedelec and Planchard [37].   It can be shown that the map-

ping defined by the single layer potential 1/ is an isomorphism from //_1'2(9£2)//>0 to

the subspace of Hx(ü,)/P0 of weak solutions of Laplace's equation. Here HX(ÇÏ) is the

space of functions with square integrable first distributional derivatives, /z'1/'2(9£2) the

space of traces of Hxi£l), //_1/2(9£2) the space dual to //"1/2(9£2), and P0 the space of

constants.  By substituting the single layer potential into the standard variational for-

mulation of the interior Neumann problem and using a Green's formula, an alternative

formulation is obtained.  The resulting bilinear form is coercive on H~xl2ibQ.)/P0 and

is equivalent to Eq. (3.4).

Before we turn to the discrete problems, we note that, in the theory just devel-

oped, the function (1/470(1//") can be replaced by other fundamental solutions of the

Laplace operator.  In particular, we can use a Green's function for a rectangular paral-

lelepiped in which the region £2 is imbedded.  The theory can also be extended, in a

straightforward way, to Helmholtz's equation with a nonzero coefficient c.

3.2. Discrete Potential Theory.   We now return to the solution of Au = b, (Eq.

(2.1)) with A = B + UZT.   Guided by the theory for the continuous case, we shall de-

velop two algorithms, one suitable for the Neumann and the other for the Dirichlet

case.

We shall assume that B is in vertible.   This is not a very restrictive assumption

since we have a great deal of freedom to choose the boundary conditions on the larger

region.

We recall from subsection 2.1 that the columns of U were chosen to be unit vec-

tors corresponding to the irregular mesh points.  If we order the points of £2ft first, fol-

lowed by those of 9£2ft and C£2ft, we can obtain the representation,

where I is a p x p identity matrix.  Let us, in analogy to the continuous case, make

the Ansatz

(3.6) u = Gb + GWs,

where the vector s has p components, G is the inverse of B, and W has the form

w= \w2\.

The operator G plays a role very similar to that of a fundamental solution for the con-

tinuous problem.  The second term GWs corresponds to a single or double layer poten-

tial.  For additional flexibility, we have introduced the mesh function b which coin-

cides with b except possibly at the irregular points of 9£2ft.   In particular, if the Helm-

holtz equation has a zero right-hand side, we can often choose b = 0, eliminating the

first term of the Ansatz.  To arrive at an equation for the vector s, we calculate the

residual,
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b-Au = b-iB + UZT)(Gb +GWs) = (b-b)- UZTGb -(1+ UZTG)Ws.

From the form of b, U, and W, we have the following result:

Lemma 3.1.  The residuals for the system (2.1) corresponding to the points of

£2ft are zero for any choice of the vector s in (3.6). // the matrix W3 is zero, they also

vanish at all points of C£2/J.

We now demand that the residuals vanish on the set 9£2Ä

0 = UT(b - Au) = UT(b -b)- ZTGb - UTAGWs.

This gives us a system of p equations

(3.7) Cs = UTAGWs = (UTW + ZTGW)s = UT(b -b)- ZtgT>,

where C is the capacitance matrix.  We ignore the residuals on the set C$lh, since the

extension of the data to this set is largely arbitrary.   It follows from the reducible struc-

ture of A that if the capacitance matrix C is nonsingular the restriction of the mesh

function u, given by Eq. (3.6), solves the discrete Helmholtz equation.  We shall now

discuss two choices of the matrix W and study the invertibility of the resulting matrices.

For a Neumann problem, our choice of W should correspond to a single layer An-

satz. We, therefore, choose W = U and note that the capacitance matrix CN = UTAGU

is then the restriction of AG to the subspace corresponding to the set 9£2ft.   Using Eqs.

(3.6) and (3.7), we find,

u = Gb- GU(UTAGUyx(ZTG'b - UT(b - b)).

This is, for b = b, the well-known Woodbury formula; see Householder [29].  For com-

pleteness, we give a proof of the following result.

Theorem 3.1.   The capacitance matrix CN is singular if and only if the matrix

A is singular.  For b = b the equation (3.7) fails to have a solution if and only if b

does not lie in the range of A.

Proof.   Let 0 be a nontrivial element of the null space of CN.  Then, since CN

= 1 + ZTGU, the vector

ZTGU</> = -<t>

is nonzero; and therefore, GU(¡> cannot vanish identically.  But AGU<¡> = UCN</> = 0;

and therefore,^ is singular.  Let now i// belong to the null space of Cj, and assume

that

tT(ZTGb) = (ipTZTG)b # 0.

Then b does not belong to the range of A since

ATGTZ\p = (BT + ZUT)GTZ\p = ZC%\p = 0.

Finally, given data for Eq. (2.1), which does not belong to the range of A, Eq. (3.7)

cannot be solvable since otherwise Eq. (3.6) would provide a solution of Eq. (2.1).

The Woodbury formula is popular for computation, especially when the rank p

of A — B is small.  In our application,/? is usually very large, often exceeding 1000.
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This precludes the computation and storage of the dense, nonsymmetric matrix CN.

We must, therefore, solve the p x p linear system,

(3.8) CNs = UT(b -b)- ZTGb,

by an iterative method which does not require the explicit calculation of the elements

of CN ; see further Section 4.  We see from Eq. (3.6) that in addition to solving the

system (3.8), we need only to solve at most two simple Helmholtz problems on the

entire mesh in order to complete the calculation of the solution u.  Our main task is,

therefore, the efficient solution of Eq. (3.8).

The efficiency of the iterative solution of Eq. (3.8) depends crucially on the dis-

tribution of the singular values of CN.  The choice W = U is suitable for Neumann

problems, since it is based on a single layer Ansatz; but it gives rise to increasingly ill-

conditioned capacitance matrices if applied to Dirichlet problems.

An alternative to the Woodbury formula gives well-conditioned capacitance ma-

trices for the Dirichlet problem.  We shall specialize to a case of a uniform rectangular

mesh; cf. subsection 2.2.  Our choice of W should correspond to a double layer poten-

tial.   Let W = VD, where D is a square diagonal matrix of nonzero scale factors and

each column of V represents a discrete dipole of unit strength associated with an ir-

regular mesh point.  The solution to our problem is then

u = gT>- GVD(UtAGVDTx(ZtgT> - UT(b -b)),

and the capacitance matrix is CD = UTAGVD.

We would like to construct the discrete dipoles by placing a positive unit charge

at an irregular mesh point and a negative unit charge at another point located on the

exterior normal through the irregular point.   Since the data for the fast Poisson solver

must be given at mesh points only, we instead divide this negative charge and place it

on three mesh points.  As an example, consider an irregular mesh point with indices

(i, /, k), for which the exterior normal through this mesh point lies in the positive oc-

tant.   Let the distances, measured in units of the mesh size, to the boundary along the

three positive coordinate axes be 5 + 1, 6+2 and 8+3, respectively.   Let further 0 < 8+x

< 5+2 < 6+3.   We find the first of the three mesh points for the negative charges by

moving in the positive xx direction, the direction of the smallest distance, to the point

(i + \,j, k).  The weight for this point is -(1 - S + 1/6+2). We then proceed in the

x2 direction, the direction of the medium distance, to the point (/' + 1,/ + l,k) which

is given the weight -(ô + 1/6+2 - 8 + x/8+3); and we finally go to the point (/' + 1,/ +

1, k + 1) which is given the weight -5 + 1/S+3.  We note that all these are nonpositive

and that their sum equals -1.  Assuming that the boundary 9£2 is smooth enough, we

find by expanding the expression V v in a Taylor series, that it equals h&(bv/bv) +

o(h), where

(3.9) hb=h8 + x(8-] + 8722 + 8723)x>2.

For future reference, we note that the area, As, of the triangle with vertices at the in-
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tersections of the boundary and the mesh lines through the irregular mesh point is

As = (h2/2)8 + x8+28+3(8-+\ + 8-+\ + 5;2)1/2.

For a region with a smooth boundary none of the mesh points used in the dis-

crete dipole construction belong to the set £2ft provided that the mesh is fine enough.

We shall assume that this condition is satisfied and reject any problem which violates

it.  For an irregular mesh point which, along the same mesh line, is within h of the

boundary in both the positive and negative directions, we use the smaller distance of

the two in the dipole construction, resolving a tie in an arbitrary way.

3.3.   The Invertibility of the Matrix CD.  An attempt to prove that CD is non-

singular, modeled strictly on the proof of Theorem 3.1, is not successful and some ad-

ditional ideas must be introduced.  The proof of the following theorem is in an impor-

tant part due to Arthur Shieh.

Theorem 3.2. Assume that the discrete Helmholtz problem is uniquely solvable,

that c > 0, and that the matrix B is of positive type.  Assume further that any mesh

function of the form GU\p takes on a maximum or a minimum.   Then the capacitance

matrix CD is invertible.

Remark. The last assumption of this theorem is of course always satisfied if the

number of mesh points is finite. It must be verified for fast solvers on regions with an

infinite number of points; cf. Section 5.

Proof.   We begin as in our proof of Theorem 3.1.  To simplify our notations, we

choose D = I.   Suppose that there exists an eigenvector <p such that CD</> = UTAGV<j>

= 0.  The mesh function AGVcp, therefore, vanishes on bilh and by Lemma 3.1, it also

vanishes on £2h.   Since the discrete problem represented by the matrix Axx is uniquely

solvable, the mesh function GV<p vanishes for all x6í2ftU 9£2ft.   Conversely, if there

exists a nontrivial vector 0 such that GV<¡> is identically zero on £2,, U 9£2ft, then by

the reducible structure of A, CD<¡> = 0.

To conclude, we must prove that there exists no nontrivial discrete dipole poten-

tial which vanishes identically on £2ft U 9£2ft.   We shall work with a very primitive ap-

proximation of the Dirichlet problem, since the particular choice of the rows of A cor-

responding to the points of 9£2ft is of no importance in this context and also use a sim-

ple approximation of an exterior Neumann problem.  After a suitable symmetric permu-

tation, which we suppress in order to simplify our notations, we write the discrete

Helmholtz operator on the entire mesh in the form

'Bn     BX2        0

52i     B22     B23

0      B32     B33

Here the subscripts 1, 2 and 3 refer to the interior, irregular and exterior mesh points,

respectively.  Our interior Dirichlet problem is simply chosen so that
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Bxx     BX2       0

AD =  j     0 /        0

\ °      B32     B33,

The dipole capacitance matrix is then

CD = G22F2  + G22V3>

where a discrete dipole layer is written as

0

V2

The matrices G„, i,j = 1, 2, 3, are the blocks of the inverse of B.  The exterior Neu-

mann problem is approximated by

Bxx     Bx:

AN=   |     0       If

0      B32

Using a single layer Ansatz, the capacitance matrix becomes

CN = VlG22 + V¡G32.

By the symmetry of the operator G, we obtain

cT = r ■

cf. the continuous case.  By the arguments given in the proof of Theorem 3.1 the ma-

trix CN is invertible if

2NGU\¡> = 0

only for 0 = 0.   Let c = 0.  Since, by assumption, GU\p attains an extremal value and

AN clearly satisfies a discrete maximum principle, we can conclude that GU\p is a con-

stant and that then BGU\p = U\p = 0.  This argument can easily be modified for the

case of c > 0; and the proof is, therefore, concluded.

We note that the assumptions of this theorem, except for the invertibility of the

matrix Axx, were used solely to prove that the null spaces of AN and B coincide.  We

also note that one of the arguments given in a similar context in Proskurowski and

Widlund [44] is incorrect.  The proof given above can be modified to give rather crude,

but still quite useful estimates of the condition number of the matrix CD, see Shieh

[48].
3.4.  The Choice of Scale Factors.   The capacitance matrix equation (3.7) is

solved by iterative methods; and it is, therefore, quite important to use a suitable scaling

of the variables and the equations.  When choosing the scaling, we shall be guided by

an interpretation of Eq. (3.7) as approximations of the well-conditioned continuous

problems (3.4) and (3.5).  We shall only discuss the Dirichlet case, since a discussion
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of the Neumann problem adds little new, and also specialize to the case when c = 0.

The scaling of CD is carried out by choosing the matrix D and the row sums of

UTA or equivalently the row sums of ZT.   It is easy to see that these are strictly posi-

tive in the special case considered in subsection 2.2 and that this property holds for

any other consistent approximation of the Dirichlet problem for Laplace's equation.

We shall now show that it is appropriate to choose D = I and to make the row sums

of Z    equal to two.

With this choice of D the first term of the capacitance matrix CD equals UTV;

see (3.7).  In the typical case where all the mesh points corresponding to the negative

weights belong to C£2/], UTV = I.   When we turn to the other term, we first note that

it can be shown, by elementary arguments, that with the choice of scaling of the ma-

trix B consistent with the formulas in subsection 2.2, h~xG, regarded as a mesh func-

tion, approximates r(x, £), a fundamental solution of the Laplace operator.  In subsec-

tion 3.2, we have interpreted VT as a difference operator in the normal direction.  We

find that (hhs)~xZTGV formally converges to 29r/9i^, since the operator ZT is a local

difference operator with a combined weight equal to two; see (3.9).  By using finite

difference theory or by studying the discrete fundamental solution directly, we can

show that this convergence is pointwise for any x ±%.  See Shieh [46] or Thomée

[55]. We note, however, that this convergence fails to be uniform.  See further dis-

cussion below.

We want to interpret the vector ZTGVp as a numerical quadrature approximation

of the corresponding term

(3.10) 2  |      bT/bv^pdo
oil

of a Fredholm integral equation similar to Eq. (3.5). We note that the factor 2 is ap-

propriate since the function (1/2*) (1 ¡r) appearing in that equation is twice a fundamen-

tal solution of the Laplace operator.  To verify that our choice of scalings gives a for-

mally convergent approximation, we must consider the density of the discrete dipoles

and the area elements to be assigned to them.  Since the distances between the dipoles

vary in a highly irregular way, we shall consider local averages over patches of the

boundary with a diameter on the order of \/h. Over an area of that size the direction

of the normal can be regarded as a constant.  We shall specialize to the case discussed

in subsection 3.2, in which the discrete dipoles were introduced, and use the same no-

tations.  In the patch considered there is then one irregular mesh point within a dis-

tance of h to the boundary along any mesh line through the patch parallel to the xx -

axis.  The area^4g, previously computed, should, therefore, be compared with the area

(h2¡2)8+28+3 of the other relevant face of the polyhedron with vertices at the irregular

point and the intersections of the mesh lines and the boundary.  Each dipole should,

therefore, be assigned the weight,

ô+1ô+2s+3(s;2 +ô;2 +ô;23)1/2/5+25+3 = 5+1(s;2 + s;2 +5;2)1'2 =\/h.

Combining these observations, we see that ZTGVp formally converges to the integral

(3.10).
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It is natural to ask if the singular values of CD converge to those of the integral

operator.  This is not in general the case, a fact intimately related to the nonuniform

distribution of the irregular mesh points.  The study of this question is of very consid-

erable difficulty.   Following Shieh [46], [47], [48], let

CD =Bh + Kh>

where Bh represents the coupling between irregular mesh points which are within \fh

of each other.  With the scaling introduced above, Kh converges pointwise to the correct

integral operator.   However, the operator Bn is not in general a formally convergent ap-

proximation of the identity operator, but for certain important finite difference schemes

and general plane regions Shieh [46], [47], [48] has been able to show that the spec-

tral condition number of Bn can be bounded independently of h.   These results, com-

bined with the crude estimates of the spectral condition number CD mentioned in the

previous subsection, suffice to show that the number of conjugate gradient steps re-

quired for a specific decrease of the error grows only in proportion to log(l/h).  See

also Proskurowski [41], [42], [43], Proskurowski and Widlund [44], [45] and Section

6 of this paper for numerical evidence.

4.   Capacitance Matrix Algorithms.

4.1. The Generation of the Capacitance Matrix. We have previously pointed out

that the central problem in our work is the efficient solution of Eq. (3.7). In this sec-

tion, we shall examine various alternatives.

We shall first consider the cost of computing the capacitance matrices CN =

UTAGU and CD = UTAGV, respectively.  These are p x p dense nonsymmetric ma-

trices where p is the number of variables associated with the set 9£2ft.  Since the ma-

trices UTA, UT and VT have only a few nonzero elements per row, the computation

of an individual element of CN or CD requires only a modest number of arithmetic

operations if the elements of G are known.  Since the order of G is at least as large as

the number of mesh points in £2ft U bSlh, the computation and storage of all its ele-

ments is out of the question.  Alternatively, columns of CN or CD can be computed

one at a time using the fast solver once per column of GU or GV.   For problems in

three dimensions the cost would be enormous.

The number of arithmetic operations can be reduced drastically by using a device

described already in Widlund [56].  The separable problem can be made periodic or the

larger region can otherwise be chosen without a boundary.  In the absence of a bound-

ary, the problem becomes translation invariant in the sense that the solution at any

mesh point, due to a single point charge at another mesh point, depends only on the

difference of the coordinates of the two mesh points.  One use of the fast Poisson solv-

er, with a discrete delta function as data, provides one column of the matrix of G.  By

this observation, all elements of G are then easily available from this one solution.  Giv-

en a column of G, the entire capacitance matrix can then be found at an expense which

grows in proportion to p2.  This cost is thus of the same order of magnitude as the

evaluation of a numerical quadrature approximation of the integral equations of the

classical potential theory (see, for example, (3.5)) employing a comparable number of
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quadrature points.  At an expense of p3/3 multiplications and additions, a triangular

factorization of the capacitance matrix can be computed by Gaussian elimination.   The

solution of the capacitance matrix equation (3.7) can then be found at an additional

expense of p2 additions and multiplications.

If the capacitance matrix is available, the equation (3.7) can also be solved by

iterative methods at an expense of between p2 and 2p2 additions and multiplications

per step; see further Proskurowski and Widlund [44].  When using an iterative method

of this kind, the elements of the capacitance matrix can either be stored, possibly on a

secondary mass storage device, or they can be regenerated whenever they are needed.

In two dimensions the number of irregular mesh points typically grows only in

proportion to Nxl2 while in three dimensions the growth is proportional to TV2/3.

Many problems in the plane can be solved satisfactorily using a value of p which is less

than 200, but in three dimensions values of p in excess of 1000 occur even for quite

coarse meshes.  We must, therefore, find alternative algorithms which do not require

the storage or direct manipulation of the large capacitance matrices unless we are will-

ing to accept a very substantial number of arithmetic operations and the use of out of

core storage devices.

To put the methods discussed so far in some perspective, we compare them with

known results on symmetric Gaussian elimination methods applied to standard finite

difference problems in two and three dimensions.  For problems in two dimensions

Hoffman, Martin and Rose [28] have shown that the number of nonzero elements of

the triangular factors must grow at least in proportion to N log2 A'.  George [20] has

designed such optimal methods and also has shown that at least A^3'2 multiplications

and additions are required to carry out the factorization step.  The corresponding best

bounds for three-dimensional problems are on the order of N4'   and A'2, respectively;

see Eisenstat [13], Eisenstat, Schultz and Sherman  [14].

We shall now demonstrate that we can compute the product of a capacitance ma-

trix and any vector t at a much smaller expense.   In the next subsections, we shall

show how such products can be used in efficiently solving Eq. (3.7) by iterative meth-

ods.  We note that in their original form these ideas are due to George [19].  We shall

specialize this discussion to the discrete dipole case, CDt = UTAGVt, but similar re-

marks can be made for the discrete Neumann problem.

We first note that the generation of the mesh function Vt can be carried out us-

ing only on the order of p operations on a three-dimensional array initialized to zero.

The fast Poisson solver is then applied to give G Vt, and only on the order of p opera-

tions are then needed to obtain CDt = UTA(GVt).  Similarly C£t can be obtained, if

so desired, by using a factored form of the matrix.  The sparse matrices UTA and V

can be computed from the coordinates of the irregular points and other local informa-

tion on the geometry of the region using only on the order of p arithmetic operations.

Since it is inexpensive to generate these matrices, we can choose to recompute their

nonzero elements whenever they are needed but they could also be stored at a cost of

on the order of p storage locations.

We remark that when UTAGVt is computed from GVt only a small fraction of
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the values of this mesh function is needed. Similarly the vector Vt is very sparse. This

has inspired the development of fast Poisson solvers which exploit the sparsity inherent

in problems of this kind; see further discussion in Section 5.

4.2. The Use of the Standard Conjugate Gradient Method. We shall first review

some material on conjugate gradient methods and then discuss their use in solving Eq.

(3.7).

Let Mv = c be a linear system of equations with a symmetric, positive definite

matrix M.  The kth iterate vk of the conjugate gradient method can then be character-

ized as the minimizing element for the problem,

(4.1) min — v TMv - v Tc
u-u0es(fc)

Here S^ is the subspace spanned by the first k elements of the Krylov sequence, rQ,

Mr0,M2r0, ... , where r0 = c -Mv0 is the initial residual and u0 is the initial guess.

See further Hestenes and Stiefel [23] or Luenberger [34].

The kth iterate is thus of the form

vk = vo +Pk-iiM>o>

where Pk_x is some polynomial of degree k — 1.  The quadratic form in (4.1) differs

from the error functional

E(vk) = Hvk - v)TM(vk - v),

only by an irrelevant constant term.  Here v is the exact solution.  The optimality re-

sult (4.1) and an expansion of the initial error v0 - v in the eigenvectors of M easily

leads to the estimate

(4.2) E(vk)<   mi"     max     (1 - ~KPk-x(X))2E(v0),
pk-l   A.ea(Af)

where o(M) is the spectrum of M.   See further Daniel [12], Kaniel [31] or Luenberger

[34].  This inequality remains valid if eigenvalues corresponding to modes absent from

the initial error are ignored when forming the maximum in (4.2).  This is important

since it allows us the use of the method and the estimate for semidefinite problems if

the data and initial guess lie in the range of the operator.

From inequality (4.2) and a special construction of the polynomial Pk_x in terms

of Chebyshev polynomials, the estimate

(4.3) E(vk) < (2(1 - 1/k)*7((1 + l/V5T)2fe + (1 - l/y/i7)2k))2E(v0)

is easily obtained; see references given above.  Here k is the spectral condition number

of the operator M.   When this ratio k of eigenvalues of M is computed, we can again

ignore eigenvalues corresponding to modes which are absent from the initial error.

A convenient way of implementing the conjugate gradient algorithm is as follows:

Let v0 he an initial guess.  Compute

(4.4) r0 = c - Mv0

and set p0 = r0.
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For k = 0, 1,2, ... :

Update the solution and the residual by

(4.5) vk+x =vk+ akpk,      rk+x = rk - akMpk,

where

(4-6) ak = rlrk/plMpk

provides the minimum of the error functional along the search direction pk.

Compute a new M-conjugate search direction by

(4.7) Pk+1 = rk+l + ßkpk,

where

(4-8> h = rTk+lrk+x/rlrk.

We note that the use of this algorithm requires no a priori information on the

spectrum of M   By a standard result, the residual vectors rk are mutually orthogonal;

see Luenberger [34].

In order to use this algorithm to solve the Dirichlet problem, we first form the

normal equations equivalent to Eq. (3.7) and obtain,

C%CDs = C^(-ZTGb - UT(b - b)).

We expect that the new matrix CpCD will still be quite well conditioned.  The

product of it and an arbitrary vector can be obtained by the methods described in sub-

section 4.1.

In our experience the inequality (4.3) gives realistic bounds for Helmholtz prob-

lems with nonnegative values of c.   If a negative value of c is chosen so that the discrete

Helmholtz operator is almost singular, the capacitance matrix must have at least one

small singular value.  By analogy with the continuous case, we however expect that

there will only be a few such values, well separated from the rest of the spectrum.

Bounds, much improved in comparison with (4.3), can therefore be obtained from ine-

quality (4.2) by constructing polynomials which vanish at the isolated small eigenvalues

of M and are small over the interval containing the rest of the spectrum.  A similar idea

was used by Hayes [21], who proved that the conjugate gradient algorithm is superlin-

early convergent when applied to a Fredholm integral equation of the second kind.  See

Widlund [57] and Proskurowski and Widlund [44] for further discussion.  Such argu-

ments are also central in the work of Shieh [47].  He was able to prove that all except

a fixed number of singular values of certain capacitance matrices for problems in the

plane lie in a fixed interval while the remaining few are no closer than Khq, K and q

constants, from the origin.  A construction of polynomials as indicated above leads to a

bound for the number of iterations required to obtain a prescribed reduction of the

error.  This bound grows only in proportion to log(l//i).

The algorithm described in this section can equally well be used for the capaci-

tance matrix equation (3.8).

4.3. An Alternative Conjugate Gradient Algorithm for Neumann Problems.  We

shall now describe an alternative conjugate gradient method, which can be used with
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the single layer Ansatz for discrete Helmholtz problems with positive semidefinite sym-

metric coefficient matrices.  It has the advantage that a normal equation formulation

of the capacitance matrix equation can be avoided and the cost per step is, therefore,

reduced by a factor two.  That such a reduction is possible is not immediately apparent

since the continuous analogue of the capacitance matrix is a nonsymmetric operator.

The search for a method of this kind was inspired by the variational formulation of the

Fredholm integral equations mentioned in subsection 3.1.  This algorithm has recently

been implemented successfully by Proskurowski and Widlund [45] for a finite element

approximation of the two-dimensional Neumann problem.

Consider the solution of a linear system of the form

Ax = b,

where A is a positive semidefinite, symmetric operator.  We make the Ansatz

x = Gy,

where G is a suitable, strictly positive definite symmetric operator.  A new variable is

now introduced by z = Gxl2y, and the resulting equation is multiplied by Gxl2

Gx>2AGx'2z = Gxl2b.

The new operator is symmetric, positive semidefinite while AG, in general, fails to be

symmetric. The standard conjugate gradient algorithm is applied to this transformed

system, and the final algorithm is then obtained by returning to the variable y.

Carrying out this substitution, we find that the formulas given in subsection 4.2

must be modified in two respects:

Replace the operator M by AG when calculating the residuals by formulas (4.4)

and (4.5).

In the calculation of the parameters ak and ßk, in formulas (4.6) and (4.8), re-

place the inner products rkrk and pkMpk by rkGrk and pkGAGpk, respectively.

The error estimates (4.2) and (4.3) apply in this case.  The relevant spectrum is

now that of the operator AG.

In our application A is the operator corresponding to the discretization of the

Helmholtz problem on the original region £2, and G the restriction of the operator G

to the set £2ft U 9£2ft.   No extension of the operator A to a larger region is necessary.

If the right-hand side b vanishes on the set £2,,, then so will the vector y, since the so-

lution x can be expressed as a discrete single layer potential.  The iteration can, there-

fore, be organized using only vectors with p components.  A version of the algorithm

has been designed which requires only one application of operator G in each step.  For

details see Proskurowski and Widlund [45].

In our problem the possibility of using the sparsity of the vectors yk gives this

algorithm an advantage over the generalized conjugate gradient algorithm considered by

Conçus, Golub and O'Leary [10] and others; see also Hestenes [22].  Their algorithm

is obtained from ours by using the iterates xk = Gyk.   The vectors xk fail to be sparse

in our applications.
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4.4. Estimates of the Singular Values and Approximate Inverses of Capacitance

Matrices.   We have previously pointed out that the residuals rk of the conjugate gra-

dient method are orthogonal.  By combining Eqs. (4.5) and (4.7), eliminating the vec-

tors pk, we obtain

Mr0 =-(l/a0)rx + (l/a0)r0,

(4.9)
Mrk = -iHak)rk+x + (l/afc + ßk^x/ak_x)rk- (ßk_x/ak_x)rk^x.

Let R^ be a matrix with its k columns chosen as the normalized residual vectors.

Using the definition of the parameter ßk, the equations (4.9) can be rewritten as

mik) = Rik)jik) _ (yßk-i /Ki \rk\))rkeTk.

Here ek is a unit vector in the direction of the positive' kth coordinate direction and

jw the symmetric, tridiagonal matrix,

l/«o -\f^7«o

J(k)=      "AK (l/ai+ß0/a0)        -^ß\/ax

Using the orthogonality of the residuals, we find that

jik) = Rik)TMRik)!

i.e. J^ is a matrix representation of the restriction of the operator M to the space

spanned by the vectors r0, ... , rk_x.  This space can easily be shown to be the same

as the Krylov subspace S^ which was defined in subsection 4.2.  See further Engeli,

Ginsburg, Rutishauser and Stiefel [15].

We shall exploit these facts in two ways.  Approximations of the eigenvalues of

M are obtained from the eigenvalues of J^k'.  The eigenvalues of J^k' interlace those

of /(fc+1) and improved estimates of the largest and smallest eigenvalues of M and a

lower bound for its condition number are, therefore, obtained in each step.  This pro-

cedure is in fact a variant of a well-known eigenvalue algorithm due to Lanczos [33].

The extreme eigenvalues of J^k' often converge quite rapidly.  See for example, Kaniel

[31] and Paige [38].  In our problems we quickly obtain realistic estimates of the con-

dition number of M.  This idea has proven a very useful tool in the development of

our algorithms, in particular when different scalings of the capacitance matrices were

tested.  The cost of computing the eigenvalues of J^ is very moderate and grows no

faster than k2.

The analogy between the capacitance matrices and the Fredholm integral opera-

tors of the second kind inspired an attempt to compute and use approximate inverses

of these matrices of the form of an identity operator plus a low rank operator. The

information contained in the matrices /(k) and Ä(fc) was used as follows. We suppose

that these matrices have been retained from a previous problem with the same coeffi-

cient matrix but with different data. The component R^Íq of the new solution in

the space S^ can then be computed inexpensively by solving the tridiagonal system,
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J(kh0 = RWT(MC0 - c),

where 0o and c are the initial guess and the data for the new problem, respectively. We

can then start the conjugate gradient iteration from the initial point 0o - R^kh0.   This

procedure requires kp + 2k - 1 additional storage locations.  The computational cost is

modest since the improved initial guess essentially only requires the calculation of k in-

ner products of length p and the linear combination R^kh0.  The same improved initial

guess could also be obtained by using a variable metric algorithm for the first set of

data, with the identity matrix as a first approximation of the Hessian, and then using

the updated Hessian in the calculation of the second solution.   See Broyden [4], Huang

[30] and Myers [36]. We note that our method clearly retains only the minimum of

necessary information to obtain the projection of the new solution on S^.

5.  Fast Poisson Solvers in Three Dimensions.  In this section, we shall describe

several variants of a Fourier-Toeplitz method for the discrete Helmholtz equation on a

region for which the variables can be separated.  We use a Fourier  transformation for

two of the three variables and solve the tridiagonal linear systems of equations, which

result from this change of basis, by a Toeplitz method.  See Fischer, Golub, Hald, Leiva

and Widlund [16] and Proskurowski and Widlund [44] for descriptions of similar al-

gorithms for two-dimensional problems.   As shown by Proskurowski [43], for problems

in two dimensions, the execution time of a well-written code of this kind can compare

quite favorably with those of good programs implementing other better known meth-

ods.  We also note that Wilhelmson and Ericksen [58] have presented strong evidence

which shows that methods based on Fourier analysis should be chosen for problems in

three dimensions.  Our methods are designed so that we can guarantee a very high de-

gree of numerical stability for all values of the coefficient c, positive or negative.

We shall consider the solution of the Helmholtz equation

- Au + cu = f

on the unit cube, 0<jc<1,0<-j><1,0<z<1.  Periodicity conditions are im-

posed on the data and the solution by

fix + l,y,z)=fix,y + l,z) = fix,y,z)

and

uix + l,y,z) = uix,y + 1, z) = uix,y, z)

and a homogeneous Dirichlet condition is used at z = 0,

uix,y,0) = 0.

We also assume that fix, y, 0) = 0.  An additional boundary condition is required at

z = 1 and will be introduced below after a Fourier transformation step.  Our methods

provide an extension of the solution to all positive values of z.  The homogeneous con-

dition at z = 0 also allows us to extend the solution and the data to negative values of

z by making them odd functions,

fix,y,-z) = -fix,y,z)   and    uix,y,-z) =-uix,y, z).

When necessary, we extend the data fix,y, z) by zero for \z\ > 1.  In our experience,
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an alternative extension, which brings the data more gradually to zero, offers no bene-

fits in our application.

We shall discuss in detail only the seven-point difference approximation and, to

simplify our notations, we shall use the same uniform mesh size h in the three coordi-

nate directions.  We shall also, without loss of generality, concentrate on the case when

n = 1/h is an even number.  The discrete Helmholtz problem can be written as

(6 + h2c)uiik-ui+x>¡k-uí_XJk-u.J+Xik-uiJ_Xik-uij<k+x -uijk_x =h2fijk.

The same periodicity and boundary conditions are used for these difference equations.

It is well known that the undivided second centered difference operator, operating

on periodic functions, has the normalized eigenfunctions

(1/«)1/2(1)1,...,1)T   and   il/n)xl2il,-l,...,-l)T

corresponding to the simple eigenvalues 0 and 4, respectively, and the (n - 2)/2 double

eigenvalues 2-2 cos(2-nl/n), I = 1,2, ... , in - 2)/2, with the eigenfunctions

$(0 = (2/„)i/2 sin(rc/27r/n),

k = 0, 1, ... ,n- 1.

<S>Wk = (2/n)xl2 cos(kl2n/n),

The change of basis resulting in the diagonalization of the centered difference operator

can be carried out inexpensively by a fast Fourier transform if n has many prime fac-

tors; see for example, Cooley, Lewis and Welsh [11].

We choose to work with a partial Fourier transform, transforming with respect to

the two variables x and y.   The resulting operator can then be represented as the direct

sum of n2 tridiagonal Toeplitz matrices which will be of infinite order if we consider

the problem for all positive values of z.  The diagonal elements of each of these ma-

trices are equal to one of the numbers,

\,m = 6 + ch2 -2 cos(2nl/n) - 2 cos(2irm/n),      l,m = 0,l, ... , n/2,

and the off-diagonal elements equal -1.

Thus, these tridiagonal systems of equations can be represented by difference

equations,

(5.1) -ûk+x +\Ûk-Ûk_x =h%

Here X = A, m and fk and ûk are values at z = kh of the appropriate components of

the partial Fourier transform of the mesh functions / and u.   Since f(x, y, z) = 0 for

z > 1, fk = 0 for k > n.  Once all the components of u have been computed, the so-

lution u can be found for the desired values of z by an inverse fast Fourier transform.

It is well known that the fast Fourier transform algorithm is very stable.

We solve the tridiagonal systems of equations by two different methods.

Case 1.  If |A| > 2, we use a special simple factorization of the matrix into tri-

angular factors. We must first choose the additional boundary condition at z = 1.  For

k > n the difference equation (5.1) is homogeneous and for |A| > 2 its solution has the
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form

uk = Apk + Bp k.

Here A and B are constants and p = A/2 + (A2/4 - l)1/2 and p~x are the roots of the

characteristic equation. We note that |p| > 1.  It is natural to make A = 0 since the

solution will then decay as & —► + °°.  This is equivalent to the boundary condition

*/)+! p '«„, and the equation at z = 1 reduces to pùn - Í.2
*n-l h fn.   The result-

ing n x n tridiagonal matrix can be written as

/

-1

-1 -1 \

-1 -1

I -1
/

We have ordered the unknowns in order of decreasing indices iûn.û, ) and used

the homogeneous Dirichlet condition at z = 0 to obtain the last row of the matrix.

This matrix has a most convenient factorization, as the product of two bidiagonal

Toeplitz matrices

/" -M"1 1 \ I
n    -i

,-i

\

M -1

,

The linear systems can, therefore, be solved by using very simple two term recursion

procedures which are highly stable since |ju| > 1.  The same procedure also works well

for the case when |A| = 2.

Case 2.  If |A| < 2, the roots of the characteristic equation fall inside the unit cir-

cle; and we can use the three term recursion formula (5.1) to compute ûk in a stable

way.  Before we can use this marching procedure, we need to find a value of ûx to pro-

vide a second initial value in addition to uQ = 0. This can be done by using the formula
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i   sin(|/ + Ä:|0)-sin(|/-fc|0),2;
"; =     /      -~-«A,
'       k% 2sin0 Jk'

which can easily be verified to give a solution of the difference equation.   Here 0 =

arceos (A/2).  For; = 1, we find the simple formula,

"    sin((fc+l)0)-sin((rc-l)0),2~ " 2f

k=i L sm f fe=i

There are other solutions of the difference equation (5.1), but the present choice gives

the same solution in the limit case |A| = 2 as the method developed for Case 1.  We,

therefore, obtain a solution of the Helmholtz problem which is a continuous function

of the parameter c. We also note that by our choice of boundary conditions, instability

has been avoided for all values of the parameter c.

The method requires «3(1 + o(l)) storage locations and, if « is a power of two,

on the order of «3(log2 n + 1) arithmetic operations.

Although quite efficient this algorithm does not fully exploit the structure of our

problem.  During the conjugate gradient iteration the mesh functions representing the

right-hand sides of the Helmholtz equation vanish except at mesh points used for the

construction of the discrete single or dipole layers.  Similarly during this main part of

the calculation, we need the solution only at the points of the stencils of the irregular

mesh points.  Thus, on any Une parallel to a coordinate axes only a few source and tar-

get points have to be considered.

We shall now briefly describe a method due to Banegas [1].  For large problems

the direct and inverse Fourier transforms with respect to one of the variables can be

carried out more economically by computing inner products of sparse vectors and the

basis vectors of the new coordinate system.  The fast Fourier transform should be used

for the second variable because after the first Fourier transform step the arrays will no

longer be sparse.   The main advantage of this variant is that it can be implemented us-

ing only a two-dimensional work array if the necessary information on the coordinates

and values of the source and target points is stored elsewhere.  Only on the order of

A/2/3 storage locations are, therefore, required for the main iteration.  See Banegas [1]

and Proskurowski [42] for more details and a discussion of the use of a similar algo-

rithm for Helmholtz problems in two dimensions.  The three-dimensional algorithm has

not yet been implemented.  The savings in storage would not show dramatically for

problems in three dimensions unless a million words of storage is available.

The calculation of the space potential terms and the final solution can also be

carried out without using arrays with n3 elements.  See Proskurowski [42] for a design

of a third variant of a Fourier-Toeplitz method.  It requires access to all elements of the

right-hand side twice but no intermediary results need to be written on secondary stor-

age devices.  The primary storage requirement can be reduced drastically at an expense

of a modest increase of the computational work.

We conclude this section by proving a result needed in connection with Theorem

3.2. We restrict ourselves to z > 0 and assume, as in that theorem, that c > 0.
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Theorem 5.1. Let f have its support in 0 < z < 1, and let c > 0. The mesh

function u = Gfi defined by the Fourier-Toeplitz method of this section, takes on a

maximum or a minimum.

Proof.   We first consider the case of c > 0.  By construction all modes of the

solution decay as z —* °°.  The conclusion then follows since we need to consider only

a finite subset of the mesh.

For c = 0, we partition the solution into two parts, u = u0 + ux. The function

u0 corresponds to the lowest frequency for which A = 2. It is easy to see that u0 de-

pends only on z and that it reduces to a linear function for z > 1. ux has a zero aver-

age for each z and decays as z —► °°. If uQ is an unbounded function, the conclusion

easily follows. If u0 is constant for z > 1, u takes on a maximum and a minimum on

that set since any nontrivial ux changes sign for each z and decays as z —► °°. If the

maximum and minimum of u on 0 < z < 1 are also considered, an extremal value of

u on z > 0 can be found.

6.   Implementation of the Algorithm and Numerical Results.

6.1.   The Program in Outline.   We have implemented a capacitance matrix algo-

rithm for the three-dimensional Helmholtz equation as a FORTRAN program.  The

Shortley-Weller approximation of the Dirichlet boundary condition described in subsec-

tion 2.2 is used, and a normal equation form of the capacitance matrix equation is

solved by using the conjugate gradient method described in subsection 4.2.  Discrete

dipoles are used as in subsection 3.2.

In designing the program, clarity and ease of modification have been prime ob-

jectives with efficiency in execution time and storage important but secondary. The

program has been successfully checked by the CDC ANSI FORTRAN verifier on the

CDC 6600 at the Courant Institute.  No machine dependent constants are used.

The program is fully documented in a Courant Institute technical report, so we

give only an outline of the program here.

The main subroutine HELM3D is the only subroutine with which the user needs

to have direct contact.  The geometric information necessary to describe the region,

the data for the differential equation, scratch storage space and convergence tolerances

are passed to this routine.

The coordinates of the irregular mesh points, altogether 3(IP1 + IP2) integer

values, are needed.  Here IP1 is the number of irregular points with at most one neigh-

bor on or outside the boundary in each coordinate direction, and IP2 is the number of

remaining irregular points.

The signed distances from the irregular mesh points to the boundary in the x,y

and z directions, 3IP1 + 6IP2 real values, are also required.

The data is entered by using four real arrays.  The values of the inhomogeneous

term / at the mesh points are stored in a three-dimensional array of dimension NX x

NY x NZ where NX, NY and NZ are the number of mesh points in the different coor-

dinate directions in the rectangular parallelepiped in which the region is embedded.

Values of this mesh function can be set arbitrarily at mesh points on or outside of the

boundary.  The boundary data, i.e. the values of the solution at the points where mesh
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lines cross the boundary, are stored in three one-dimensional arrays requiring 3IP1 +

6IP2 real words of storage.

In total two real three-dimensional arrays of dimension NX x NY x NZ and ele-

ven one-dimensional arrays are used.  One of the one-dimensional arrays is real and of

dimension max(IPl + 2IP2, NX x NZ, NY x NZ).  The remaining four integer and six

real arrays are of length IP1 + 2IP2.  The need for array space could be decreased by,

among other things, packing the coordinates of the irregular points into one array.  If

/ is zero, one of the three-dimensional arrays is eliminated simply by not dimensioning

it in the calling program.  In the general case, this second array could be kept on a sec-

ondary storage device with very little degradation in the performance of the program.

For a discussion of further possible reduction of array space, see Section 5.

The conjugate gradient iteration is controlled by two input parameters NIT, the

maximum number of iterations allowed, and EPS, a tolerance for the norm of the re-

sidual.

Upon termination the approximate solutions of the Helmholtz and capacitance

matrix equations and the residual of the capacitance matrix equation are available. The

values of the three-dimensional array containing the solution at mesh points on or out-

side of the boundary are useless by-products of the calculation.  The capacitance matrix

solution can be refined, if so desired, by additional calls of HELM3D using current val-

ues of the dipole strength and the residual.

A sample driver is provided in our program to illustrate the use of the HELM3D

subroutine.  We note that we have found it relatively convenient to describe our regions

in terms of inequalities.

HELM3D calls other subroutines to set up the right-hand side and solves the ca-

pacitance matrix equation.  It is the only subroutine which needs to be modified in or-

der to incorporate the singular value estimates or the accumulation of an approximate

inverse discussed in subsection 4.4.  The right-hand side of the capacitance matrix equa-

tion is calculated by the subroutine BNDRY.   The subroutines BNDRY, UTAMLT and

UTATRN, all related to the finite difference formulas near the boundary, must be

changed if a different approximation of the boundary condition is to be implemented.

The two subroutines VMULT and VTRANS depend on the discrete dipole construction.

Single layer versions of these subroutines should be written if the program is modified

to solve the Neumann problem.

The fast Poisson solver of Section 5 is implemented in subroutine CUBE.  It uses

two FFT subroutines RFORT and FORT provided by Dr. W. Proskurowski, who has

modified code written by Dr. J. Cooley.

The product of the capacitance matrix CD and an arbitrary vector is formed by

calling the subroutines VMULT, CUBE and UTAMLT.  Similarly, the product of C%

and a vector is formed by using UTATRN, CUBE and VTRANS.

The system also has an error checking module, HELMCK.  This subroutine checks

that enough storage space has been allocated, that the indices of the irregular points are

within range, that no irregular points are missing or listed twice and that the discrete

dipoles point out of the region.
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One of the three-dimensional arrays, w, is used when checking the geometric in-

formation for self-consistency.   For each irregular point the corresponding element of

w is set to indicate 9£2/I after a check that this point has not been previously marked

as irregular or exterior.  The current values of w at the six neighbors of the point are

checked for consistency by using the distances to the boundary which are given as data.

Appropriate elements of w are then set to indicate that these points belong to £2,, U

9£2„ or C£2ft.

Each line of points of the three-dimensional array begins at an outside point.  In

a second stage, we march across each line, setting vv to indicate C£2ft until an indicator

of £2^ (signalling an error) or 9£2ft is encountered.  We proceed along the line, setting

vv elements to indicate £2ft whenever appropriate, until we leave the region via a point

of 9£2ft.   In this way an array is created which could be used to display the subsets £2h,

9£2ft and C£2ft graphically. We then use this array and the data on the distances to the

boundary to check that no dipole charge falls on an interior mesh point; see subsection

3.2.  Finally, we make sure that no interior mesh point has an exterior neighbor.

Our code could be modified to perform these checks locally, without using a

three-dimensional array.

The execution time could be reduced in several ways.   In the current program

the coefficients for the difference equation at the irregular mesh points and the dipole

weights are recomputed every time they are used.  Storage of these elements would

save time.  The subroutine CUBE can be replaced by a faster Poisson solver.  Overhead

in subroutine calls could be reduced through the use of COMMON.

6.2. Numerical Experiments.   Extensive numerical experiments have been carried

out with our program on the CDC 6600 at the Courant Institute and the Amdahl

470V/6 at the University of Michigan.  Dr. W. Proskurowski has also kindly run some

problems on a CDC 7600 at the Lawrence Berkeley Laboratory.  We report in detail

only on experiments carried out on the CDC 6600 using a FTN, OPT = 2, compiler

and no more than 50000 words of storage for the arrays.  In our experience, the pro-

gram runs about six times faster on a CDC 7600.

The runs reported have been made for problems with the solutions x2 + y2 +

2z2 and x2 + y2 - 2z2, but extensive experiments with other types of data make us

confident that the performance of our algorithm is virtually independent of the right-

hand side.  The efficiency of our method as a highly specialized linear equation solver

can easily be studied for these simple solutions since there is no truncation error.  For

the finest meshes, we consider only homogeneous problems, i.e. /= 0, in order to save

one three-dimensional array.  The initial guess is always chosen to be zero.

The parameter EPS is used in the stopping criterion of the conjugate gradient al-

gorithm.  The iteration is terminated when the Euclidean norm of the residual of the

capacitance matrix equation drops below EPS x yJÏP where IP = IP1 + IP2.  The con-

dition number of C£CD, k(C£Cd), is estimated by using ideas from subsection 4.4 and

the TQL1 subroutine of EISPACK.  The time required for this calculation is included

in the tables.

Three regions have been used in these experiments and the results are reported in

Tables 1—3.  The smallest recorded times for the  execution of the fast Poisson solver
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are .055, .432 and 2.757 seconds for 8 x 8 x 9, 16 x 16 x 17 and 32 x 32 x 24

points, respectively.

Table 1

Radius of
sphere

.360 .424 .4sii .447

Number of
interior and
irregular
points

93 1357 7556 8796

Number of
irregular
points,   IP

66 438 1522 1698

NX X NY X NZ ix 8 X 9 16 x 16 x 17 32x32 X24 32 x32 x24

Condition
number, 14.7 39-7 56.7 77.2

D

Tolerance,   EPS 1E-2       .1E-5 .1E-2       .1E-5        .1E-8 .1E-2       .1E-5       .1E-S .IE-2       .1E-5

Number of
iterations

15 17 26 17

Maximum error 403E-2   .936E-5 •314E-1   .167E-5   .596E-8 •384E-1   -367E-4   .262E-7 ■584E-1  .548E-4

Total execution
time  in seconds

• 952 1.58 9.03 17.9  25.9 58-5 117 173 58.8 116

Percentage of
time spent
using the fast
Poisson solver

65.O 72.7 76.I  76.8 84.3 85-5 83.4

Experiments with spherical regions centered at (.5,«5.-5) with c «= 0.

When we examine the tables, we note the very modest growth in the number of

iterations when the size of the problem increases.  The stability of our method is fur-

ther illustrated by the very accurate solutions obtained when the tolerance EPS is cho-

sen to be very small.

Table 2

Number of interior
and irregular points

Number of irregular
points, IP

NX X NY X NZ

Condition number,

£CD>««ftn'

Tolerance,   EPS

Number of  iterations

Maximum  error

Total execution
time  in seconds

Percentage of time
spent using  the
fast  Poisson solver

2050

16 X 16 X 17

602

1E-2 .1E-5

13 23 32

258E-I     .325E-4     .377E-7

19.7 33.I 45.5

62.3 63.3 63.5

10464

3172

32x32 x24

554

1E-2 .1E-5 .1E-

13 23 35

• 517E-1     .55^-3     .805E-7

171 255

75-3 77.1 77-6

Experiments with c = 0 and a cube with a sphere  cut  out,   0.1  < x < 0.9,

0.1 « y < 0.9,   0.1 < z < 0.9 and x + y + z    >  (0.2)   .

The experiments of Table 3 require some further comments.   Faster methods are

of course available for rectangular regions.  This region has been chosen since the eigen-

values of the discrete Laplace operator are known explicitly. We note that when c is
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Table 3

The
constant c

•34.892 •52-238 -77-91 •205-5

Condition
number 2-39 42.2 6.07E+6 4.35E+3 8.78E+5

Tolerance,
EPS

1E-3   .1E-5   IE-11 1E-3   .1E-5   .IE-11 1E-7 1E-5   . 1E-11

Number of
iterations

12 23 47 66

Maximum
error

121E-2   .233E-4   .140E-10 433E-2   .177E-4   .201E-10 ■ 371E-6 124E-6 .343E-4   .372E-10 •995E-5

Execution
time in
seconds

6.76   9.43   20.2 11.4   16.4   30.O 27.9 52-3 60.O    85.6 259

Experiment with the region 0.125 < x < 0.875, 0.125 <y*  0.875 and

0.125 _< z <  0.875 and different values of c and EPS.  The number of

interior and irregular points is 1331 and IP, NX, NY and NZ are 602,

16, 16 and 17, respectively.  Between 70.3 and 74.1$ of the execution

time is used by the fast Poisson solver.

large and positive, as in the application of our method to the solution of a parabolic

equation by an implicit method, the convergence is extremely rapid.  In such applica-

tions an excellent initial guess is also normally available.  Negative values of c lead to

more difficult problems.  The smallest eigenvalue of the operator is Amin = 52.337926

... and another eigenvalue is equal to 205.78497 ....  The values 34.892 and 77.91

approximate (2/3)Amin and the average of the two smallest eigenvalues, respectively.

The problems which are almost singular or indefinite are very ill-conditioned.  However,

only a few eigenvalues of CpCD are very small, and the conjugate gradient method is

still relatively successful; see further discussion in Proskurowski and Widlund [44].

Using the approximate inverse idea of subsection 4.4, improved initial approxima-

tions for the discrete dipole strengths have been obtained for a series of problems on a

spherical region.  To illustrate the performance of this method, we consider the prob-

lem of Table 1 with 1357 unknowns.  The tolerance EPS was chosen to be .1E-4 and

14 iterations were required.  Eight vectors were saved from this run and used to con-

struct an initial approximation of the discrete dipole layer for two problems with solu-

tions drastically different from the previous one.  For these subsequent problems only

nine iterations were required to reach a comparable accuracy.  In implementing this

method, precautions must be taken to insure that round-off does not contaminate the

computation.  The orthogonality of the residual vectors should be monitored and vec-

tors and parameters computed after loss of orthogonality must be discarded.  With care-

ful implementation, this can be a very effective technique and can lead to substantial

savings when many problems are to be solved for the same region.
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