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Classification of
Gynecologic Flow
Cytometry Data
A Comparison of Methods
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Several discriminant function methods for automati
cally classifying flow cytometry data from human
cervical material were developed and compared with
previously published methods using a sample of 186
specimens. The misclassification rates (approximate
ly 20%) were similar to those of other published tech
niques for classifying these data. The methods mis-
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classify different cases, however. The apparent sys
tem performance appears to be limited by at least
three factors: (1) use of too small a sample in con
structing classification algorithms, (2) poor "visibil
ity" of small numbers of abnormal cells in the flow
histograms and (3) incorrect or inconsistent visual
classification of the samples used to construct the
classification algorithms. The third factor results in
erroneously high estimates of the misclassification
rate. Even so, the overall system performance ap
pears to be comparable to that of many cytotechnol-
o gists.

Flow cytometry (FCM) has been extensively investi
gated3,6,1018"20 as a method for screening uterine cer
vical material for the early detection of malignant
and premalignant changes. Although several algo
rithms have been published for classifying patients
on the basis of the two-dimensional flow histograms
obtained by FCM,3,1018"20 their performance has
fallen short of that desired for a practical screening
method. It has not been clear whether this apparent
deficiency in system performance resulted from defi
ciencies in the pattern classification algorithms or
from limitations in the raw data obtained due to
problems of sample preparation and staining or
problems inherent in the FCM technique. It is diffi
cult to separate these two sources of error when eval
uating the system as a whole. Nevertheless, one
would suppose that if several different pattern classi
fication algorithms were to result in the same misclas-
sifications when applied to a constant set of patient
data, the errors would probably result from limita
tions in the information content of the cytometry
data. On the other hand, if the algorithms were to
misclassify different patients, at least some of the dif
ficulty would probably lie in the pattern classifica
tion schemes. In this case, it might be possible to sub
stantially improve system performance by combining
features of more than one pattern classification meth
od.

In this study we tested several approaches to the
classification of FCM histograms. The results are
compared, with the goal of discovering sources of er
ror in the FCM screening system as a whole. Finally,
the expected performance of various systems in a
"real world" operating environment is discussed.

Materials and Methods
The cases studied were those accumulated by Hab
bersett et al10; specimen preparation and FCM analy
sis are presented in detail in that paper. Two hundred
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nine samples of cervical material from patients treat
ed at family planning and gynecology clinics were
collected on Dacron swabs, suspended in alcohol,
stained with propidium iodide and fluorescein isothi-
ocyanate (PI-FITC) and analyzed on a Los Alamos
Scientific Laboratory Flow Sorter. This procedure
yields two-dimensional 64X64 histograms with red
fluorescence on one axis and green fluorescence on
the other. Twenty-three specimens consisted of fewer
than 10,000 cells; these were considered inadequate
for diagnosis and were not analyzed further. The re
maining 186 samples were classified into five classes
(I = normal; II = negative with atypia; III = dyspla
sia; IV = carcinoma in situ; V = invasive carcino
ma) by consensus of three cytologists. These visual
classifications were used as the basis for developing
automatic classification techniques for the FCM data.
The 124 specimens in classes I and II were considered
"normal" for this purpose, while the 62 specimens
from classes III, IV and V were considered abnormal.

The computer algorithms used in the data analysis
were based on the mathematical techniques of dis
criminant analysis and the singular value decomposi
tion. A brief exposition of the singular value decom
position is contained in Appendix I.

Classification Method 1
In methocr 1 (Figure 1), a peak at one corner of the
flow histograms, corresponding to nonstaining cells,
was first set to zero in each case. Next, the flow histo-

METHOD 1

INPUT: 64 x 64 matrix
I

Normalized 8x8 matrix

Selection of elements
(32 most different)

Stepwise linear discriminant analysis

8 - element discriminant function
I

Select threshold for classification
Figure 1
Outline of classification method 1.

grams were partitioned into 64 8 X 8 blocks; the ele
ments of each block were then summed. This reduced
the data for each patient to an SX8 matrix, which
was then normalized so that its elements summed to
one. The within-group means of the 64 elements thus
obtained were calculated for both normal and abnor
mal case groups. Visual inspection of these 64 pairs
of means showed that only 32 pairs differed signifi
cantly. These 32 elements were then used as the basis
of a stepwise linear discriminant analysis.1213 Only
the eight elements that contributed significantly to
the discriminant function were retained in the final
discriminant function. These seemed to reflect the
dispersion of the squamous cell peak in much the
same way as earlier studies had.6,10 The frequency of
misclassification was estimated using the "hold-one-
out" method.16 This is perhaps the simplest of all the
methods proposed for classification of flow cytome
try data, requiring a minimum of computation.

Classification Method 2
In method 2 (Figure 2), the original 64X64 histo
grams were reduced to 32 X 32 by 2 X 2 partitioning
and summing, similar to method 1, after zeroing the
nonstaining cell peak. The left and right singular vec
tors corresponding to the largest singular values of
these matrices were then computed using the Golub-
Reinsch algorithm,9 as implemented in EISPACK.8
The outer product of these vectors constitutes the
best (in a least-squares sense) rank-one approxima
tion of the 32 X 32 matrix. Examination of the sample
data shows that this singular value and singular vec
tor pair generally contains approximately 50% to
60% of the information in the original 32X32 ma
trix. Following their computation, the elements of
these vectors were used in a stepwise linear discrimi
nant analysis, which reduced to ten the number of
important features.

Although the singular value decomposition has
been used as a tool in image restoration,1,2 to our
knowledge it has not been used directly as part of a
pattern classification algorithm.

Classification Method 3
In method 3 (Figure 2), the singular values of the
32 X 32 matrix obtained in method 2 were normalized
to sum to one. These were then analyzed using step
wise linear discriminant analysis. The rationale for
classification based on the singular values is as
follows. There is a fundamental change in the nature
of the cells populating the female genital tract in dys-
plastic and neoplastic states. Elements of the normal
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INPUT: 64 x 64 matrix

Normalized 32 x 32 matrix

Compute singular values and left and right singular
vectors corresponding to the largest singular value

METHOD 2

Singular vectors

METHOD 3

Normalized singular values

Stepwise discriminant analysis
i

10 - feature discriminant function
I

Select threshold for discrimination

Stepwise discriminant analysis

5 - feature discriminant function
■ F i g u r e 2

Outline of classification methods
Select threshold for discrimination 2 and 3.

genital epithelium are still present, but abnormal ele
ments are also present in varying numbers, usually
increasing in percentage as the severity of the dys-
plastic/neoplastic process increases. The rank of the
data matrix might be expected to reflect the number
of different cellular elements present.22 If a single cell
type were present, the rank of the data matrix would
be expected to be less than if two cell types were pres
ent. The rank of the data matrix might be expected to
increase as more cell types with different fluorescence
histograms were added to the specimen.

Other Classification Methods
Several other related classification algorithms were
investigated. All began by zeroing of the nonstaining
cell peak. Then the histograms were reduced to 8X8
matrices as in method 1. One method summed the
rows and columns of the 8 X 8 matrix, yielding a two-
vector characterization of the axes of the flow histo
gram. The elements of these vectors were then used
as features in a linear discriminant analysis. This
method is reminiscent of that used by Sprenger et
aj i9.2o a second gave a two-vector representation by
calculating the singular vectors of the matrix as in
method 2. These vectors were then used as the data
for discriminant analysis. A third method used the
singular values obtained in the above process in a dis
criminant analysis.

In all of the classification algorithms, the constant
of the discriminant function was chosen near the

point where the total error of classification is mini
mized. In several cases it was shifted slightly from
this point to reduce the number of false-negative clas
sifications.

Results and Discussion
The results for methods 1, 2 and 3 are summarized in
Table I. The performance of the singular value meth
od (method 3) was not as good as expected. Although
the general trend we predicted, that the first few sin
gular values of the abnormal specimen matrices
would be larger than those of the normal specimen
matrices, seems to be true, there are many individual
exceptions. Attempts to define an "effective rank" for
these matrices, based on the number of singular val
ues greater than some threshold, fail to give good
separations of normal and abnormal specimens. This
occurs at least in part because there are several differ
ent sources of changes in the rank of the matrices. In
addition to the increase in rank caused by the pres
ence of cytologically atypical cells, the rank may be
increased by the presence of inflammatory cells that,
although often seen in specimens thought to be dys-
plastic or neoplastic, are not always present and may
be seen in material from patients with no cytologic
abnormality. Errors made by this method (method 3)
tended to parallel those of the singular vector method
(method 2), although there were more errors overall.
Both of these methods gave results that differed signi
ficantly from those of method 1, particularly in er-
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Table I Analysis of P1-F1TC Data for Screening of Gynecologic
Cytology Specimens

Positive called Negative called
Method negative (%) positive (%) Overall (%)

1 31 11 18
2 23 20 21
3 37 19 32

Two-step 10 27 20
Fourier 31 15 20

Combined 18 18 18

rors in assigning visually abnormal specimens.
Although the misclassification rates for the first

two methods were nearly the same, analysis of the
canonical variable for the methods showed better
overall separation of groups for method 2 than for
method 1. For this reason method 2 is preferable: se
lection of the discriminant function constant is easier
since finding the optimal constant is less likely to be
complicated by sample noise.

None of the algorithms discussed above under
"Other Classification Methods" performed at a level
comparable to these three. The singular vector meth
od was far superior to the vector-summing method,
as would be expected. The singular vector method
for the 8X8 matrix was less effective in classification
than that based on the 32X32 matrix, however. An
attempt to classify using the singular values of this
8X8 matrix failed. These results suggest that data
useful in classification are lost when reducing the ma
trix from 32X32 to 8X8.

Table I also presents data for the two-step method
and the Fourier classification method (as described
previously by Habbersett et al10 and Bentley et al,3
respectively). We see that the error rates are compar
able to those of the methods described in the present
work. Table II shows the visually assigned classifica
tions for the cases incorrectly classified by any of the
five methods. The list tabulated for the two-step
method10 is not strictly comparable to those for
methods 1 to 3, however, for the two-step method re
jected groups of data if an associated pooled normal
control was misclassified (see Habbersett et al10 for
details). Cases that were rejected for this reason are
marked with a "§" in Table II. Also, the list of cases
misclassified by the Fourier method is incomplete, for
the original calculations are not all available. Many
cases were misclassified by several methods, but only
one was misclassified by all.

The overlap in misclassification between method 1

and the other methods proposed in this paper was
small. For this reason we attempted to construct a
linear discriminant function based upon those fea
tures known to be useful from investigation of meth
ods 1 and 2. The results shown in Table I for this
"combined" method were somewhat disappointing.
We might have hoped that the total number of mis-
classifications would be lower than with either of the
methods that were combined. There was little im
provement, however, and the combined classifier
misclassified some cases that were not misclassified
by either of the methods that were combined. The
combined method, however, did misclassify fewer
class IV and V patients that did either method 1 or 2.
These results, particularly the misclassification of
specimens thought to be severely abnormal on the
basis of visual classification, again raise the possibil
ity that some of the classification errors that have
been encountered in flow cytometry are due to limi
tations in the information content of the FCM data
and will not be eliminated by the development of
new pattern classifiers.

What are some of the possible sources of error in
classification? The first, mentioned above, is a funda
mental limit in the amount of information contained
in the two-dimensional flow histogram. The number
of atypical cells may be too small to permit their
identification in the midst of a large number of nor
mal cells. Even if the data are present in the flow his
togram, they may be impossible to include in a dis
criminant function of reasonable size constructed on
the basis of the relatively small number of cases we
have used. Use of a larger number of cases might well
permit the inclusion of a larger number of features
for discrimination and subsequent improvement of
the algorithms.

Second, and equally important, is error in visual
classification of the input data. While Lachen
bruch1415 has shown that small errors in assigning
initial classifications result in small changes in the
true rate of misclassification using linear discriminant
functions, the effect on the apparent rate of misclassi
fication determined by the hold-one-out method is
certain to be more pronounced and no less than the
rate of initial misclassification. For classification of
samples drawn from two multivariate normal distri
butions, the rates Eiv and E^ of misclassification of
normal and abnormal specimens, respectively, esti
mated by the hold-one-out method are nearly the
same as those estimated by the formulas

E„ = d>[- -ln(p„/pJ+D2/2"
D
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and

- tln(p„/pJ-D2/2"
D

where pw is the proportion of normal specimens in
the sample, pA is the proportion of abnormal sped-

Table II Misclassified Cases

FCM classification method Visual
C a s e 1 2 3 T S F C classification

3 X

6 X X

9 X X

11 X

12 X X X

13 X

14 X

17 X

20 X

23 X X

24 X X X

25 X

30 X

31 x r X X

32 X

33
34 X

35
36 X X

38 X

42 X X

43 X

45 X X

47
50 X

52
55 X

56 X

57 X

59 X

60 X

61 X

63 X

65 X X

68 X X

71 X

72 X

73
75 X X

77
79 X

80
82 X

83
85 X X

89 X

90 X

92

I
I
I
I I
I
I
II
I I
I I
I
I
I
I
I
I
I
I

pooled normal
I
I
I
I I*
i r

pooled normal
I
II
II
I
I
I
II
I
I
II
I

pooled normal
II
II

pooled normal
I
I*

Table II {continued)

FCM classification method Visual
C a s e 1 2 3 T S F C classification

97
98
99

100
103
104
108
109
110
112
113
114
116
117
118
119
120
121
125
126
131
134
136
137
139
140
141
142
144
146
147
148
151
152
154
155
156
157
158
159
160
161
162
165
166
167
168
169
170
171
176
178
180
182
183

II*
II*
I
I
I
II
I
II
II
I
I
II
I
I
P
I
II
I
IV
IV
V
III
III
III
V
III
III
III
III
V
IV*
V
III
III
III
III
V
V
V
III
III
III
III
III
III
III
III
III
III
III
V
V
V
V
V

TS = two-step method
misclassified case; § =
normal specimen; and *
the three cytologists.

; F = Fourier method; C = combined method; x =
case not considered because of misclassified pooled
= significant disagreement in interpretation among
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mens, D2 is the squared Mahalonobis distance esti
mated on the basis of the sample used to construct
the discriminant function and <l> is the cumulative
normal distribution function. The true misclassifica
tion rates are properly estimated by

E„ = et>[-ln(̂ )+<52/2]
and

-4ln(pN/pA)-62/2'

where 6 is the separation between the "correctly clas
sified" populations. If fractions ax and a2 of the nor
mal and abnormal specimens are initially misclassi
fied, D will tend to (l-a1-a2)262/(l + Z62), where Z
is positive, and may thus severely underestimate 62
(see Appendix II). The effect of misclassification is il
lustrated in Tables III and IV, in which the effects of
misclassification for the Mahalonobis distances and
the apparent error rates are summarized. This esti
mate of the bias is based on the assumption that input
misclassification errors are randomly dispersed in the
sample. If there is a nonrandom distribution, which
seems likely, the effect on the estimated errors of mis
classification may be even more severe, as may be the
effects on the calculated discriminant function.15

The number of "misclassification errors" in the in
put data is potentially quite significant. Of the 209
specimens that were visually classified in this study,
there was significant disagreement on whether a spec-

Table III Squared Mahalonobis Distances (D2) Expected for
Populations Separated by Distance 6 for Samples
Misclassified with Rates at = a2 = a

cr = 0.05 a=0.10 a=0.15
1.0 0.77 0.59 0.43
4.0 2.72 1.88 1.30

16.0 7.33 4.20 2.57

Table IV Expected and Apparent Rates of Misclassification (EN
and EA) for Specimens Drawn from Populations
Separated by Distance 6 and Initially Misclassified with
Rates Q-i = a2 = a

a = 0.00 a = 0.05 a = 0.10 a = 0.15
62 Ea E„ EA E„ Ea E„ Ea E„
1.0 0.12 0.43 0.11 0.64 0.10 0.70 0.08 0.76
4.0 0.09 0.26 0.11 0.34 0.12 0.43 0.12 0.52

16.0 0.02 0.03 0.05 0.14 0.09 0.25 0.11 0.36

imen was normal (class I or II) or abnormal (general
ly class III) in 21 specimens. Most of these were not
"misclassified" by the pattern recognition techniques
used here. Those that were are identified with an as
terisk in Table II. This rate is consistent with reports
in which significant discrepancies in the interpreta
tion of cytologic material have been found in 10% to
20% of the cases.4-71117 It may well be that many of
the "misclassifications" reported in this and other
studies of automated cytology techniques should be
regarded as no more than "disagreements" with the
cytopathologist of the sort that occur routinely be
tween cytopathologists. If, in fact, the input
misclassification rate for our sample were 10%, the
actual false-positive and false-negative rates for
method 2 and for the combined method could be less
than 5%, as compared with about 20% reported in
Table I. The fact that several of the misclassified
specimens were felt to be severely abnormal (as in
cases 156 to 158) suggests that while the difficulties
with input classification may account for some of the
deficiencies in system performance, they probably do
not account for all of them. Nevertheless, even ex
perienced screeners occasionally misclassify cytologi-
cally severely abnormal specimens, and sometimes
specimens with severe cytologic atypia do not reflect
histologically confirmable malignant or premalig-
nant disease. In any event, it seems likely that the er
ror rates estimated in this study and in all other stu
dies of automatic cytologic screening are higher than
the true error rates of classification. Only by use of
noncytologic criteria, such as clinical course or (less
desirably) biopsy, can optimal criteria for cytologic
classification and accurate estimates of the error rates
of various classification algorithms be determined.

How would these systems perform in the real
world? If we accept all cases in the test samples as
correctly classified, the combined method achieves a
sensitivity of 90% with a specificity of 30% in an op
erating environment having 10% abnormal speci
mens (this algorithm has a false-positive rate of 23%
at the point on the ROC curve where the false-nega
tive rate is 10%). This performance is comparable to
that being achieved with high-resolution image anal
ysis systems.21 It is also comparable to the perfor
mance of many.cytotechnologists,4 though not the
best.5

Appendix I
The singular value decomposition of an n X n matrix
G is a factorization of it as the product of three ma
trices:
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G = USV

where the columns of V are eigenvectors of G'G, the
columns of U are eigenvectors of GG' and S is a diag
onal matrix whose element are the square roots of the
eigenvalues of G'G (or, equivalently, GG'), arranged
in decreasing order. This decomposition has many
applications in statistics, but the property we rely on
in this work is that a good approximation to G can be
obtained by truncating the three matrices. In fact, of
all matrix products WTX' where W and X are n X r
matrices and T is an rXr matrix (r < n), the one that
best approximates G in a least-squares sense is
UiSiVi, where Ui is the matrix containing the first r
columns of U, V1 contains the first r columns of V
and Si is an r X r diagonal matrix containing the first r
diagonal elements of S. The columns of U and V are
called the left and right singular vectors, respectively,
and the diagonal elements of S are called singular val
ues. The number of nonzero singular values is equal
to the rank of the matrix.

Appendix II
Lachenbruch14 has previously considered the estima
tion of error rates in classifying by means of discrimi
nant analysis members of samples drawn from two
multivariate normal populations with equal covari-
ance matrices 2 when there are errors in initial as
signment of samples used to construct the discrimi
nant function. His published result contains an error,
so the derivation is repeated here with the correct re
sult.

The optimal discriminant function for classifica
tion of a sample is

Dr(X) = X - 0.5(Mi+M2)'X",Oii-M2)

where l^ and \x2 are the means of the two popula
tions. The population Mahalonobis distance is given
by
62 = (mi-M2>'2"Vi-M2).

The variance of Dr(X) is 6. For the sample with co-
variance matrix S, the counterpart to 6 found in the
discriminant analysis is given by

D2 = fa-^ 'S^Xa-X, ) .

If »! is the proportion of the na observations from the
first sample that really belong to the second popula
tion and a2 is the proportion of the n2 observations
from the second sample that really belong to the first

population, then for large n2 and n2
X! = (1 —<*!>[*! + a1\x2
and

x2 = (l — a2)iu2 + a2/ii.
S tends to T* where

i* = z + (Ml-M2)(Ml-M2)'£±̂
(n! + n2)

for q = ati(l — ajiii.
Z*"1 is given by

(Ci + C2) t
(T^T)1 <*-M2)(Mi-M2)Ii*-1 = r1 - 1 + [(ca + c^/^ + n^Jd2

and D2 thus tends to

1 + Zd2

where

Z = (d + cj/du + n;,).
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